Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

22-03-2022 | Technical Article

Direct Aging of B319 Al Alloy: Microstructure, Hardness, and Electrical Conductivity

Authors: Eli Vandersluis, Comondore Ravindran, Menachem Bamberger

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct aging a casting to a T5 temper may be a suitable, cost-effective alternative to two-stage precipitation heat treatment schedules for some industrial applications. However, its successful implementation requires an in-depth understanding of the associated phase transformations and their influence on material properties. Hence, this study established the relationships between microstructure, hardness, and electrical conductivity, realized by the direct aging of industrial B319 Al alloy. Samples with various solidification rates and Sr contents were treated at 250 °C for durations up to 24 h, followed by Rockwell hardness and eddy-current electrical conductivity measurements. These data were complemented with novel, in situ analysis of the elevated-temperature microstructural transformations, using high-resolution electron microscopy and x-ray diffraction techniques. Even without prior dissolution and homogenization, direct aging produced extensive precipitation and coarsening of fine θ′ and θ-Al2Cu phases, yet the products of transformations were localized in the solute-enriched regions near the interdendritic phases. The associated alleviation of as-cast lattice strains substantially enhanced alloy conductivity by up to 5% International Annealed Copper Standard (IACS), yet reduced hardness by up to 15 HRB, independent of the casting prehistory. Therefore, T5 heat treatments at 250 °C can be advantageous for high-conductivity Al components designed for low-stress applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, and R. MacKay, Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads, Mater. Sci. Eng. A, 2015, 648, p 401–411.CrossRef E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, and R. MacKay, Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads, Mater. Sci. Eng. A, 2015, 648, p 401–411.CrossRef
2.
go back to reference J. Davis Ed., ASM Specialty Handbook: Aluminum and aluminum alloys, ASM International, Materials Park, OH, 1993 J. Davis Ed., ASM Specialty Handbook: Aluminum and aluminum alloys, ASM International, Materials Park, OH, 1993
3.
go back to reference R. Sharma, Phase Transformations in Materials, CBS Publishers and Distributors, New Delhi, 2002. R. Sharma, Phase Transformations in Materials, CBS Publishers and Distributors, New Delhi, 2002.
4.
go back to reference G.E. Dieter, Mechanical Metallurgy, 3rd ed. McGraw-Hill Education, New York, 1986. G.E. Dieter, Mechanical Metallurgy, 3rd ed. McGraw-Hill Education, New York, 1986.
5.
go back to reference R. Lumley, I. Polmear, H. Groot, and J. Ferrier, Thermal Characteristics of Heat-Treated Aluminum High-Pressure Die-Castings, Scr. Mater., 2008, 58, p 1006–1009.CrossRef R. Lumley, I. Polmear, H. Groot, and J. Ferrier, Thermal Characteristics of Heat-Treated Aluminum High-Pressure Die-Castings, Scr. Mater., 2008, 58, p 1006–1009.CrossRef
6.
go back to reference S. Choi, H. Cho, C. Kang, and S. Kumai, Precipitation Dependence of Thermal Properties for Al-Si-Mg-Cu-(Ti) Alloy with Various Heat Treatment, J. Alloys Compd., 2015, 647, p 1091–1097.CrossRef S. Choi, H. Cho, C. Kang, and S. Kumai, Precipitation Dependence of Thermal Properties for Al-Si-Mg-Cu-(Ti) Alloy with Various Heat Treatment, J. Alloys Compd., 2015, 647, p 1091–1097.CrossRef
7.
go back to reference R. Lumley, N. Deeva, R. Larsen, J. Gembarovic, and J. Freeman, The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings, Metall. Mater. Trans. A, 2013, 44A, p 1074–1086.CrossRef R. Lumley, N. Deeva, R. Larsen, J. Gembarovic, and J. Freeman, The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings, Metall. Mater. Trans. A, 2013, 44A, p 1074–1086.CrossRef
8.
go back to reference E. Vandersluis, C. Ravindran, and M. Bamberger, Mechanisms Affecting Hardness and Electrical Conductivity in Artificially-Aged B319 Aluminum Alloy, J. Alloys Compd., 2021, 867(159121), p 1–11. E. Vandersluis, C. Ravindran, and M. Bamberger, Mechanisms Affecting Hardness and Electrical Conductivity in Artificially-Aged B319 Aluminum Alloy, J. Alloys Compd., 2021, 867(159121), p 1–11.
9.
go back to reference S. Alkahtani, Mechanical Performance of Heat Treated 319 Alloys as a Function of Alloying and Aging Parameters, Mater. Design, 2012, 41, p 358–369.CrossRef S. Alkahtani, Mechanical Performance of Heat Treated 319 Alloys as a Function of Alloying and Aging Parameters, Mater. Design, 2012, 41, p 358–369.CrossRef
10.
go back to reference S.K. Chaudhury, D. Apelian, P. Meyer, D. Massinon, and J. Morichon, Fatigue Performance of Fluidized Bed Heat Treated 319 Alloy Diesel Cylinder Heads, Metall. Mater. Trans. A, 2015, 46(7), p 3015–3027.CrossRef S.K. Chaudhury, D. Apelian, P. Meyer, D. Massinon, and J. Morichon, Fatigue Performance of Fluidized Bed Heat Treated 319 Alloy Diesel Cylinder Heads, Metall. Mater. Trans. A, 2015, 46(7), p 3015–3027.CrossRef
11.
go back to reference D. Liu, H. Atkinson, P. Kapranos, and H. Jones, Effect of Heat Treatment on Properties of Thixoformed High Performance 2014 and 201 Aluminium Alloys, J. Mater. Sci., 2004, 39(1), p 99–105.CrossRef D. Liu, H. Atkinson, P. Kapranos, and H. Jones, Effect of Heat Treatment on Properties of Thixoformed High Performance 2014 and 201 Aluminium Alloys, J. Mater. Sci., 2004, 39(1), p 99–105.CrossRef
12.
go back to reference P. Cavaliere, E. Cerri, and P. Leo, Effect of Heat Treatments on Mechanical Properties and Fracture Behavior of a Thixocast A356 Aluminum Alloy, J. Mater. Sci., 2004, 39(5), p 1653–1658.CrossRef P. Cavaliere, E. Cerri, and P. Leo, Effect of Heat Treatments on Mechanical Properties and Fracture Behavior of a Thixocast A356 Aluminum Alloy, J. Mater. Sci., 2004, 39(5), p 1653–1658.CrossRef
13.
go back to reference M. Payandeh, E. Sjölander, A. Jarfors, and M. Wessén, Influence of Microstructure and Heat Treatment on Thermal Conductivity of Rheocast and Liquid Die Cast Al-6Si-2Cu-Zn alloy, Int. J. Cast Met. Res., 2016, 29(4), p 202–213.CrossRef M. Payandeh, E. Sjölander, A. Jarfors, and M. Wessén, Influence of Microstructure and Heat Treatment on Thermal Conductivity of Rheocast and Liquid Die Cast Al-6Si-2Cu-Zn alloy, Int. J. Cast Met. Res., 2016, 29(4), p 202–213.CrossRef
14.
go back to reference P. Ouellet and F. Samuel, Effect of Mg on the Ageing Behaviour of Al-Si-Cu 319 Type Aluminium Casting Alloys, J. Mater. Sci., 1999, 34, p 4671–4697.CrossRef P. Ouellet and F. Samuel, Effect of Mg on the Ageing Behaviour of Al-Si-Cu 319 Type Aluminium Casting Alloys, J. Mater. Sci., 1999, 34, p 4671–4697.CrossRef
15.
go back to reference C. Cingi, V. Rauta, E. Suikkanen, and J. Orkas, Effect of Heat Treatment on Thermal Conductivity of Aluminum Die Casting Alloys, Adv. Mater. Res., 2012, 538–541, p 2047–2052.CrossRef C. Cingi, V. Rauta, E. Suikkanen, and J. Orkas, Effect of Heat Treatment on Thermal Conductivity of Aluminum Die Casting Alloys, Adv. Mater. Res., 2012, 538–541, p 2047–2052.CrossRef
16.
go back to reference E. Cerri, E. Evangelista, S. Spigarelli, P. Cavaliere, and F. DeRiccardis, Effects of Thermal Treatments on Microstructure and Mechanical Properties in a Thixocast 319 Aluminum Alloy, Mater. Sci. Eng. A, 2000, 284, p 254–260.CrossRef E. Cerri, E. Evangelista, S. Spigarelli, P. Cavaliere, and F. DeRiccardis, Effects of Thermal Treatments on Microstructure and Mechanical Properties in a Thixocast 319 Aluminum Alloy, Mater. Sci. Eng. A, 2000, 284, p 254–260.CrossRef
17.
go back to reference M. Hafiz and T. Kobayashi, A Study on the Microstructure-Fracture Behavior Relations in Al-Si Casting Alloys, Scripta Metall. Mater., 1994, 30, p 475–480.CrossRef M. Hafiz and T. Kobayashi, A Study on the Microstructure-Fracture Behavior Relations in Al-Si Casting Alloys, Scripta Metall. Mater., 1994, 30, p 475–480.CrossRef
18.
go back to reference S. Joseph and S. Kumar, A Systematic Investigation of Fracture Mechanisms in Al–Si Based Eutectic alloy—Effect of Si Modification, Mater. Sci. Eng. A, 2013, 588, p 111–124.CrossRef S. Joseph and S. Kumar, A Systematic Investigation of Fracture Mechanisms in Al–Si Based Eutectic alloy—Effect of Si Modification, Mater. Sci. Eng. A, 2013, 588, p 111–124.CrossRef
19.
go back to reference E. Vandersluis, P. Emadi, B. Andilab, and C. Ravindran, The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of as-cast B319 Aluminum Alloy, Metall. Mater. Trans. A, 2020, 51(4), p 1874–1886.CrossRef E. Vandersluis, P. Emadi, B. Andilab, and C. Ravindran, The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of as-cast B319 Aluminum Alloy, Metall. Mater. Trans. A, 2020, 51(4), p 1874–1886.CrossRef
20.
go back to reference E. Vandersluis and C. Ravindran, Effects of Solution Heat Treatment Time on the As-Quenched Microstructure, Hardness and Electrical Conductivity of B319 Aluminum Alloy, J. Alloys Compd., 2020, 838(155577), p 1–13. E. Vandersluis and C. Ravindran, Effects of Solution Heat Treatment Time on the As-Quenched Microstructure, Hardness and Electrical Conductivity of B319 Aluminum Alloy, J. Alloys Compd., 2020, 838(155577), p 1–13.
21.
go back to reference E. Vandersluis, C. Ravindran, and M. Bamberger, The Detriment of Coherency Strains to the Electrical Conductivity of Naturally-Aged B319 Al Alloy, Metall. Mater. Trans. A, 2020, 51, p 5923–5931.CrossRef E. Vandersluis, C. Ravindran, and M. Bamberger, The Detriment of Coherency Strains to the Electrical Conductivity of Naturally-Aged B319 Al Alloy, Metall. Mater. Trans. A, 2020, 51, p 5923–5931.CrossRef
22.
go back to reference A. Lombardi, C. Ravindran, and R. MacKay, Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks, J. Mater. Eng. Perform., 2015, 24(6), p 2179–2184.CrossRef A. Lombardi, C. Ravindran, and R. MacKay, Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks, J. Mater. Eng. Perform., 2015, 24(6), p 2179–2184.CrossRef
23.
go back to reference E. Vandersluis, N. Prabaharan, and C. Ravindran, Solidification Rate and the Partial Modification of 319 Aluminum Alloy with Strontium, Int. J. Metalcast., 2020, 14, p 37–46.CrossRef E. Vandersluis, N. Prabaharan, and C. Ravindran, Solidification Rate and the Partial Modification of 319 Aluminum Alloy with Strontium, Int. J. Metalcast., 2020, 14, p 37–46.CrossRef
24.
go back to reference E. Ogris, A. Wahlen, H. Lüchinger, and P. Uggowitzer, On the Silicon Spheroidization in Al-Si Alloys, J. Light Met., 2002, 2, p 263–269.CrossRef E. Ogris, A. Wahlen, H. Lüchinger, and P. Uggowitzer, On the Silicon Spheroidization in Al-Si Alloys, J. Light Met., 2002, 2, p 263–269.CrossRef
25.
go back to reference R. Wang and W. Lu, Spheroidization of Eutectic Silicon in Direct-Electrolytic Al-Si Alloy, Metall. Mater. Trans. A, 2013, 44A, p 2799–2809.CrossRef R. Wang and W. Lu, Spheroidization of Eutectic Silicon in Direct-Electrolytic Al-Si Alloy, Metall. Mater. Trans. A, 2013, 44A, p 2799–2809.CrossRef
26.
go back to reference V. Páramo, R. Colás, E. Velasco, and S. Valtierra, Spheroidization of the Al-Si Eutectic in a Cast Aluminum Alloy, J. Mater. Eng. Perform., 2000, 9, p 616–622.CrossRef V. Páramo, R. Colás, E. Velasco, and S. Valtierra, Spheroidization of the Al-Si Eutectic in a Cast Aluminum Alloy, J. Mater. Eng. Perform., 2000, 9, p 616–622.CrossRef
27.
go back to reference Z. Yuan, Z. Guo, and S. Xiong, Effect of As-Cast Microstructure Heterogeneity on Aging Behavior of a High-Pressure Die-Cast A380 Alloy, Mater. Charact., 2018, 135, p 278–286.CrossRef Z. Yuan, Z. Guo, and S. Xiong, Effect of As-Cast Microstructure Heterogeneity on Aging Behavior of a High-Pressure Die-Cast A380 Alloy, Mater. Charact., 2018, 135, p 278–286.CrossRef
28.
go back to reference Y.M. Han, A.M. Samuel, F.H. Samuel, and H.W. Doty, Dissolution of Al2Cu Phase in Non-Modified and Sr Modified 319 Type Alloys, Int. J. Cast Met. Res., 2008, 21(5), p 387–393.CrossRef Y.M. Han, A.M. Samuel, F.H. Samuel, and H.W. Doty, Dissolution of Al2Cu Phase in Non-Modified and Sr Modified 319 Type Alloys, Int. J. Cast Met. Res., 2008, 21(5), p 387–393.CrossRef
29.
go back to reference J. Gruzleski, Microstructure Development During Metalcasting, American Foundrymen’s Society Inc, Des Plaines, IL, 2000. J. Gruzleski, Microstructure Development During Metalcasting, American Foundrymen’s Society Inc, Des Plaines, IL, 2000.
30.
go back to reference G. Kasperovich, T. Volkmann, L. Ratke, and D. Herlach, Microsegregation during Solidification of an Al-Cu Binary Alloy at Largely Different Cooling Rates (0.01 to 20,000 K/s): Modeling and Experimental Study, Metall. Mater. Trans. A, 2008, 39A, p 1183–1191.CrossRef G. Kasperovich, T. Volkmann, L. Ratke, and D. Herlach, Microsegregation during Solidification of an Al-Cu Binary Alloy at Largely Different Cooling Rates (0.01 to 20,000 K/s): Modeling and Experimental Study, Metall. Mater. Trans. A, 2008, 39A, p 1183–1191.CrossRef
31.
go back to reference Y. Han, A. Samuel, H. Doty, S. Valtierra, and F. Samuel, Optimizing the Tensile Properties of Al–Si–Cu–Mg 319-Type Alloys: Role of Solution Heat Treatment, Mater. Des., 2014, 58, p 426–438.CrossRef Y. Han, A. Samuel, H. Doty, S. Valtierra, and F. Samuel, Optimizing the Tensile Properties of Al–Si–Cu–Mg 319-Type Alloys: Role of Solution Heat Treatment, Mater. Des., 2014, 58, p 426–438.CrossRef
32.
go back to reference M. Mulazimoglu, R. Drew, and J. Gruzleski, Solution Treatment Study of Cast Al-Si Alloys by Electrical Conductivity, Can. Metall. Q., 1989, 28(3), p 251–258.CrossRef M. Mulazimoglu, R. Drew, and J. Gruzleski, Solution Treatment Study of Cast Al-Si Alloys by Electrical Conductivity, Can. Metall. Q., 1989, 28(3), p 251–258.CrossRef
33.
go back to reference M. Natan and R. Chihoski, Relationship Between Microstructure, Hardness and Electrical Conductivity of 2219 Aluminium, J. Mater. Sci., 1983, 18, p 3288–3298.CrossRef M. Natan and R. Chihoski, Relationship Between Microstructure, Hardness and Electrical Conductivity of 2219 Aluminium, J. Mater. Sci., 1983, 18, p 3288–3298.CrossRef
34.
go back to reference D. Zalensas Ed., Aluminum Casting Technology, 2nd ed. American Foundry Society Inc, Schaumburg, IL, 1993 D. Zalensas Ed., Aluminum Casting Technology, 2nd ed. American Foundry Society Inc, Schaumburg, IL, 1993
35.
go back to reference T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, The HighScore Suite, Powder Diffr., 2014, 29(2), p S13–S18.CrossRef T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, The HighScore Suite, Powder Diffr., 2014, 29(2), p S13–S18.CrossRef
36.
go back to reference J.M. Silcock and T.J. Heal, The θ’ Structure in Aluminium-Copper Alloys, Acta Crystallogr., 1956, 9, p 680.CrossRef J.M. Silcock and T.J. Heal, The θ’ Structure in Aluminium-Copper Alloys, Acta Crystallogr., 1956, 9, p 680.CrossRef
37.
go back to reference A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation, Acta Mater, 2011, 59(15), p 6187–6204.CrossRef A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation, Acta Mater, 2011, 59(15), p 6187–6204.CrossRef
38.
go back to reference E. Vandersluis, B. Andilab, C. Ravindran, and M. Bamberger, In-Situ Characterization of the Solution Heat Treatment of B319 Aluminum Alloy Using x-ray Diffraction and Electron Microscopy, Mater. Charact., 2020, 167(110499), p 1–14. E. Vandersluis, B. Andilab, C. Ravindran, and M. Bamberger, In-Situ Characterization of the Solution Heat Treatment of B319 Aluminum Alloy Using x-ray Diffraction and Electron Microscopy, Mater. Charact., 2020, 167(110499), p 1–14.
39.
go back to reference F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. Pinatel, and P. Uggowitzer, The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys, Mater Sci Eng A, 2013, 560, p 481–491.CrossRef F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. Pinatel, and P. Uggowitzer, The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys, Mater Sci Eng A, 2013, 560, p 481–491.CrossRef
Metadata
Title
Direct Aging of B319 Al Alloy: Microstructure, Hardness, and Electrical Conductivity
Authors
Eli Vandersluis
Comondore Ravindran
Menachem Bamberger
Publication date
22-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06804-6

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners