Skip to main content
Top
Published in: Journal of Computational Electronics 3/2019

08-05-2019

Directed acyclic graph-based design of digital logic circuits using QCA

Authors: Jadav Chandra Das, Debashis De

Published in: Journal of Computational Electronics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Directed acyclic graphs (DAGs) are useful for modeling of quantum-dot cellular automata (QCA)-based digital circuits. In this paper, DAGs are used to design the single-layer architecture of QCA circuits. A context-free grammar is proposed to check whether a majority gate-based Boolean expression is syntactically correct or not. Whether a given sentence satisfies the grammar can be tested using the corresponding parse tree. Language-independent (three-address) code can then be constructed from the parse tree to draw a DAG and thereby design the QCA circuit corresponding to a given Boolean expression. The clock zones are partitioned according to each level of the DAG. The abstract architecture developed from the DAG is simulated using the QCADesigner tool.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Roehner, N., Myers, C.J.: Directed acyclic graph-based technology mapping of genetic circuit models. ACS Synth. Biol. 3(8), 543–555 (2014)CrossRef Roehner, N., Myers, C.J.: Directed acyclic graph-based technology mapping of genetic circuit models. ACS Synth. Biol. 3(8), 543–555 (2014)CrossRef
2.
go back to reference Balasubramanian, P., Anantha, K.: Power and delay optimized graph representation for combinational logic circuits. Int. J. Comput. Sci. 2(1), 47–53 (2007) Balasubramanian, P., Anantha, K.: Power and delay optimized graph representation for combinational logic circuits. Int. J. Comput. Sci. 2(1), 47–53 (2007)
3.
go back to reference Sipser, M.: Introduction to the Theory of Computation. Chapter 2: Context-Free Grammars, pp. 91–122. PWS, Boston (1997). ISBN 0-534-94728-X Sipser, M.: Introduction to the Theory of Computation. Chapter 2: Context-Free Grammars, pp. 91–122. PWS, Boston (1997). ISBN 0-534-94728-X
4.
go back to reference Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)CrossRef Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)CrossRef
5.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)CrossRef
6.
go back to reference Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)CrossRef Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)CrossRef
7.
go back to reference De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)CrossRef De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)CrossRef
8.
go back to reference Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15(4), 1484–1497 (2016)CrossRef Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15(4), 1484–1497 (2016)CrossRef
10.
go back to reference Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)CrossRef Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)CrossRef
11.
go back to reference Kassa, S.R., Nagaria, R.K.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)CrossRef Kassa, S.R., Nagaria, R.K.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)CrossRef
12.
go back to reference Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13, 701–708 (2014)CrossRef Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13, 701–708 (2014)CrossRef
13.
go back to reference Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)CrossRef Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)CrossRef
14.
go back to reference Hayati, M., Rezaei, A.: New approaches for modeling and simulation of quantum-dot cellular automata. J. Comput. Electron. 13(2), 537–546 (2014)CrossRef Hayati, M., Rezaei, A.: New approaches for modeling and simulation of quantum-dot cellular automata. J. Comput. Electron. 13(2), 537–546 (2014)CrossRef
15.
go back to reference Neto, O.P.V., Pacheco, M.A.C., Barbosa, C.R.H.: Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Trans. Comput. 56(2), 191–201 (2007)MathSciNetCrossRefMATH Neto, O.P.V., Pacheco, M.A.C., Barbosa, C.R.H.: Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Trans. Comput. 56(2), 191–201 (2007)MathSciNetCrossRefMATH
16.
go back to reference Dey, A., Das, K., De, D., De, M., Das, S.: Fan-out constraints in quantum dot cellular automata circuit design. Nanomater. Energy 5, 43–52 (2016)CrossRef Dey, A., Das, K., De, D., De, M., Das, S.: Fan-out constraints in quantum dot cellular automata circuit design. Nanomater. Energy 5, 43–52 (2016)CrossRef
17.
go back to reference Dey, A., Das, K., Das, S., De, M.: Feed forward neural network approach for reversible logic circuit simulation in QCA. In: Information Systems Design and Intelligent Applications, pp. 61–71. Springer, India (2015) Dey, A., Das, K., Das, S., De, M.: Feed forward neural network approach for reversible logic circuit simulation in QCA. In: Information Systems Design and Intelligent Applications, pp. 61–71. Springer, India (2015)
18.
go back to reference Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)CrossRef Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)CrossRef
19.
go back to reference Tehrani, M.A., Navi, K., Kia-kojoori, A.: Multi-output majority gate-based design optimization by using evolutionary algorithm. Swarm Evolut. Comput. 10, 25–30 (2013)CrossRef Tehrani, M.A., Navi, K., Kia-kojoori, A.: Multi-output majority gate-based design optimization by using evolutionary algorithm. Swarm Evolut. Comput. 10, 25–30 (2013)CrossRef
20.
go back to reference Beiki, Z., Mirzakuchaki, S., Soryani, M., Mozayani, N.: Cell number optimization for quantum cellular automata based on AND-OR-Inverter. J. Comput. Theor. Nanosci. 9(5), 627–630 (2012)CrossRef Beiki, Z., Mirzakuchaki, S., Soryani, M., Mozayani, N.: Cell number optimization for quantum cellular automata based on AND-OR-Inverter. J. Comput. Theor. Nanosci. 9(5), 627–630 (2012)CrossRef
21.
go back to reference Beiki, Z., Soryani, M., Mirzakuchaki, S.: Cell number optimization for quantum cellular automata based on genetic algorithm. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 3, pp. 370–373. IEEE (2011, April) Beiki, Z., Soryani, M., Mirzakuchaki, S.: Cell number optimization for quantum cellular automata based on genetic algorithm. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 3, pp. 370–373. IEEE (2011, April)
22.
go back to reference Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef
23.
go back to reference Houshmand, M., Khayat, S.H., Rezaei, R.: Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, vol. 1, pp. 584–588. IEEE (2009, November) Houshmand, M., Khayat, S.H., Rezaei, R.: Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, vol. 1, pp. 584–588. IEEE (2009, November)
24.
go back to reference Bonyadi, M.R., Azghadi, S.M.R., Rad, N.M., Navi, K., Afjei, E.: Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm. In: International Conference on Electrical Engineering, 2007. ICEE’07, pp. 1–5. IEEE (2007, April) Bonyadi, M.R., Azghadi, S.M.R., Rad, N.M., Navi, K., Afjei, E.: Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm. In: International Conference on Electrical Engineering, 2007. ICEE’07, pp. 1–5. IEEE (2007, April)
25.
go back to reference Borgfadi, M.R.: A new hybrid genetic-based reduction method in nanoelectronic circuits. World Appl. Sci. J. 9(6), 666–673 (2010) Borgfadi, M.R.: A new hybrid genetic-based reduction method in nanoelectronic circuits. World Appl. Sci. J. 9(6), 666–673 (2010)
26.
go back to reference Chung, W.J., Smith, B., Lim, S.K.: Node duplication and routing algorithms for quantum-dot cellular automata circuits. IEEE Proc. Circuits Dev. Syst. 153(5), 497–505 (2006)CrossRef Chung, W.J., Smith, B., Lim, S.K.: Node duplication and routing algorithms for quantum-dot cellular automata circuits. IEEE Proc. Circuits Dev. Syst. 153(5), 497–505 (2006)CrossRef
27.
go back to reference Amarú, L., Gaillardon, P.E., De Micheli, G.: Majority-inverter graph: a new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(5), 806–819 (2016)CrossRef Amarú, L., Gaillardon, P.E., De Micheli, G.: Majority-inverter graph: a new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(5), 806–819 (2016)CrossRef
28.
go back to reference Riente, F., Turvani, G., Vacca, M., Roch, M.R., Zamboni, M., Graziano, M.: ToPoliNano: a CAD tool for nano magnetic logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(7), 1061–1074 (2017)CrossRef Riente, F., Turvani, G., Vacca, M., Roch, M.R., Zamboni, M., Graziano, M.: ToPoliNano: a CAD tool for nano magnetic logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(7), 1061–1074 (2017)CrossRef
29.
go back to reference Hansen, M., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering. IEEE Des. Test. 16(3), 72–80 (1999)CrossRef Hansen, M., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering. IEEE Des. Test. 16(3), 72–80 (1999)CrossRef
30.
go back to reference Huo, Z., Zhang, Q., Haruehanroengra, S., Wang, W.: Logic optimization for majority gate-based nanoelectronic circuits. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2006), pp. 1307–1310 (2006) Huo, Z., Zhang, Q., Haruehanroengra, S., Wang, W.: Logic optimization for majority gate-based nanoelectronic circuits. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2006), pp. 1307–1310 (2006)
31.
go back to reference Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef
Metadata
Title
Directed acyclic graph-based design of digital logic circuits using QCA
Authors
Jadav Chandra Das
Debashis De
Publication date
08-05-2019
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2019
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01341-3

Other articles of this Issue 3/2019

Journal of Computational Electronics 3/2019 Go to the issue