Skip to main content
Top
Published in: Telecommunication Systems 2/2016

01-10-2016

Distributed joint subcarrier and discrete power allocation for cognitive radio ad hoc networks

Authors: Fei Wang, Songtao Guo, Yawei Shi, Xiaofeng Liao

Published in: Telecommunication Systems | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the key problems in orthogonal frequency division multiple-access (OFDMA) cognitive radio (CR) ad hoc networks is to efficiently and fairly allocate subcarriers and powers in a distributed manner. However, two formidable shortcomings exist in most previous works. One is that the fairness issue has not been sufficiently taken into account so that different types of fairness among secondary users (SUs) may not be guaranteed. The other is that the transmission power of each SU is assumed to take any value in a continuous domain, whereas for practical CR ad hoc networks, the power level can only be quantized into discrete values. To overcome the above shortcomings, an optimization framework is first presented, where different types of fairness for resource allocation are considered and the transmission power of each SU is allowed to take only a finite number of discrete values. In particular, the fairness of resource allocation is guaranteed by associating each SU with a utility function for each subcarrier, where the utility function is allowed to be non-concave or non-differentiable so that our framework can deal with resource allocation for real-time applications. Furthermore, to solve the proposed non-convex integer optimization problem, a distributed algorithm with low complexity is proposed, according to which only limited cooperation among network entities is required. At last, simulation results verify that our algorithm has very good convergence and fairness performance, and then it may be applied to practical OFDMA-based CR ad hoc networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Federal Communications Commission. (2003). In Cognitive radio technologies proceeding. Report ET Docket, No. 03-108. Federal Communications Commission. (2003). In Cognitive radio technologies proceeding. Report ET Docket, No. 03-108.
2.
go back to reference Ngo, D. T., & Le-Ngoc, T. (2011). Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 60(7), 3436–3449.CrossRef Ngo, D. T., & Le-Ngoc, T. (2011). Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 60(7), 3436–3449.CrossRef
3.
go back to reference Xing, Y., Mathur, C. N., Haleem, M., et al. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.CrossRef Xing, Y., Mathur, C. N., Haleem, M., et al. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.CrossRef
4.
go back to reference Salem, M., Adinoyi, A., Rahman, M., et al. (2010). An overview of radio resource management in relay-enhanced OFMDA-based networks. IEEE Communications Surveys and Tutorials, 12(3), 422–438.CrossRef Salem, M., Adinoyi, A., Rahman, M., et al. (2010). An overview of radio resource management in relay-enhanced OFMDA-based networks. IEEE Communications Surveys and Tutorials, 12(3), 422–438.CrossRef
5.
go back to reference Bansal, G., Hossain, M. J., Bhargava, V. K., et al. (2013). Subcarrier and power allocation for OFDMA-based cognitive radio systems with joint overlay and underlay spectrum access mechanism. IEEE Transactions on Vehicular Technology, 62(3), 1111–1122.CrossRef Bansal, G., Hossain, M. J., Bhargava, V. K., et al. (2013). Subcarrier and power allocation for OFDMA-based cognitive radio systems with joint overlay and underlay spectrum access mechanism. IEEE Transactions on Vehicular Technology, 62(3), 1111–1122.CrossRef
6.
go back to reference Adian, M. G., & Aghaeinia, H. (2014). Resource allocation in MIMO-OFDM-based cooperative cognitive radio networks. IEEE Transactions on Communications, 62(7), 2224–2235.CrossRef Adian, M. G., & Aghaeinia, H. (2014). Resource allocation in MIMO-OFDM-based cooperative cognitive radio networks. IEEE Transactions on Communications, 62(7), 2224–2235.CrossRef
7.
go back to reference Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2009). Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control. IEEE Transactions on Vehicular Technology, 58(9), 4878–4889.CrossRef Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2009). Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control. IEEE Transactions on Vehicular Technology, 58(9), 4878–4889.CrossRef
8.
go back to reference Mokari, N., Azmi, P., & Saeedi, H. (2014). Quantized ergodic radio resource allocation in cognitive networks with guaranteed quality of service for primary network. IEEE Transactions on Vehicular Technology, 63(8), 3774–3782.CrossRef Mokari, N., Azmi, P., & Saeedi, H. (2014). Quantized ergodic radio resource allocation in cognitive networks with guaranteed quality of service for primary network. IEEE Transactions on Vehicular Technology, 63(8), 3774–3782.CrossRef
9.
go back to reference Mokari, N., Parsaeefard, S., Saeedi, H., et al. (2015). Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.CrossRef Mokari, N., Parsaeefard, S., Saeedi, H., et al. (2015). Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.CrossRef
10.
go back to reference Kim, S.-J., Soltani, N. Y., & Giannakis, G. B. (2013). Resource allocation for OFDMA cognitive radios under channel uncertainty. IIEEE Transactions on Wireless Communications, 12(7), 3578–3587.CrossRef Kim, S.-J., Soltani, N. Y., & Giannakis, G. B. (2013). Resource allocation for OFDMA cognitive radios under channel uncertainty. IIEEE Transactions on Wireless Communications, 12(7), 3578–3587.CrossRef
11.
go back to reference Cheng, P., Zhang, Z., Chen, H. H., et al. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.CrossRef Cheng, P., Zhang, Z., Chen, H. H., et al. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.CrossRef
12.
go back to reference Bazerque, J.-A., & Giannakis, G. B. (2007). Distributed scheduling and resource allocation for cognitive OFDMA radios. Mobile Networks and Applications, 13(5), 452–462.CrossRef Bazerque, J.-A., & Giannakis, G. B. (2007). Distributed scheduling and resource allocation for cognitive OFDMA radios. Mobile Networks and Applications, 13(5), 452–462.CrossRef
13.
go back to reference Guo, S. T., Dang, C. Y., & Liao, X. F. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad hoc networks. Wireless Networks, 17, 1493–1512.CrossRef Guo, S. T., Dang, C. Y., & Liao, X. F. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad hoc networks. Wireless Networks, 17, 1493–1512.CrossRef
14.
go back to reference Gao, S., Qian, L. J., & Vaman, D. R. (2009). Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks. IEEE Transactions on Wireless Communications, 8(10), 5202–5213.CrossRef Gao, S., Qian, L. J., & Vaman, D. R. (2009). Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks. IEEE Transactions on Wireless Communications, 8(10), 5202–5213.CrossRef
15.
go back to reference Xu, C., Sheng, M., Yang, C. G., et al. (2014). Pricing-based multiresource allocation in OFDMA cognitive radio networks: An energy efficiency perspective. IEEE Transactions on Vehicular Technology, 63(5), 2336–2348.CrossRef Xu, C., Sheng, M., Yang, C. G., et al. (2014). Pricing-based multiresource allocation in OFDMA cognitive radio networks: An energy efficiency perspective. IEEE Transactions on Vehicular Technology, 63(5), 2336–2348.CrossRef
16.
go back to reference Qu, Q., Milstein, L. B., & Vaman, D. R. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70–82.CrossRef Qu, Q., Milstein, L. B., & Vaman, D. R. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70–82.CrossRef
17.
go back to reference Saki, H., & Shikh-Bahaei, M. (2015). Cross-layer resource allocation for video streaming over OFDMA cognitive radio networks. IEEE Transactions on Multimedia, 17(3), 333–345.CrossRef Saki, H., & Shikh-Bahaei, M. (2015). Cross-layer resource allocation for video streaming over OFDMA cognitive radio networks. IEEE Transactions on Multimedia, 17(3), 333–345.CrossRef
18.
go back to reference Yang, L. B., Zhao, H. L., & Jia, M. (2014). Cross-layer scheduling design for multimedia applications over cognitive ad hoc networks. China Communications, 11(7), 99–109.CrossRef Yang, L. B., Zhao, H. L., & Jia, M. (2014). Cross-layer scheduling design for multimedia applications over cognitive ad hoc networks. China Communications, 11(7), 99–109.CrossRef
19.
go back to reference Wang, W., Shin, K. G., & Wang, W. B. (2012). Distributed resource allocation based on queue balancing in multihop cognitive radio networks. IEEE/ACM Transactions on Networking, 20(3), 837–850.CrossRef Wang, W., Shin, K. G., & Wang, W. B. (2012). Distributed resource allocation based on queue balancing in multihop cognitive radio networks. IEEE/ACM Transactions on Networking, 20(3), 837–850.CrossRef
20.
go back to reference Pan, M., Zhang, C., Li, P., et al. (2012). Spectrum harvesting and sharing in multi-hop CRNs under uncertain spectrum supply. IEEE Journal on Selected Areas in Communications, 30(2), 369–378.CrossRef Pan, M., Zhang, C., Li, P., et al. (2012). Spectrum harvesting and sharing in multi-hop CRNs under uncertain spectrum supply. IEEE Journal on Selected Areas in Communications, 30(2), 369–378.CrossRef
21.
go back to reference Bao, V. N. Q., Thanh, T. T., Nguyen, T. D., et al. (2012). Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: Performance analysis and relay position optimization. The Journal of Communications and Networks, 15(3), 266–275.CrossRef Bao, V. N. Q., Thanh, T. T., Nguyen, T. D., et al. (2012). Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: Performance analysis and relay position optimization. The Journal of Communications and Networks, 15(3), 266–275.CrossRef
22.
go back to reference Cammarano, A., Presti, F. L., & Maselli, G., et. al. (2015). Throughput-optimal cross-layer design for cognitive radio ad hoc networks. IEEE Transactions on Parallel and Distributed Systems (to be published). Cammarano, A., Presti, F. L., & Maselli, G., et. al. (2015). Throughput-optimal cross-layer design for cognitive radio ad hoc networks. IEEE Transactions on Parallel and Distributed Systems (to be published).
23.
go back to reference Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.CrossRef Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.CrossRef
24.
go back to reference Sengupta, S., Chatterjee, M., & Kwiat, K. A. (2010). A game theoretic framework for power control in wireless sensor networks. IEEE Transactions on Computers, 59(2), 231–242.CrossRef Sengupta, S., Chatterjee, M., & Kwiat, K. A. (2010). A game theoretic framework for power control in wireless sensor networks. IEEE Transactions on Computers, 59(2), 231–242.CrossRef
25.
go back to reference Liu, C.-H., Rong, B. Y., & Cui, S. G. (2015). Optimal discrete power control in poisson-clustered ad hoc networks. IEEE Transactions on Wireless Communications, 14(1), 138–151.CrossRef Liu, C.-H., Rong, B. Y., & Cui, S. G. (2015). Optimal discrete power control in poisson-clustered ad hoc networks. IEEE Transactions on Wireless Communications, 14(1), 138–151.CrossRef
26.
go back to reference Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Jointly optimal congestion and contention control based on network utility maximization. IEEE Communications Letters, 10(3), 216–218.CrossRef Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Jointly optimal congestion and contention control based on network utility maximization. IEEE Communications Letters, 10(3), 216–218.CrossRef
27.
go back to reference Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Optimal MAC design based on utility maximization reverse and forward engineering. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM’06), pp. 1–13. Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Optimal MAC design based on utility maximization reverse and forward engineering. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM’06), pp. 1–13.
28.
go back to reference Hande, P., Zhang, S. Y., & Chiang, M. (2007). Distributed rate allocation for inelastic flows. IEEE/ACM Transactions on Networking, 15(6), 1240–1253.CrossRef Hande, P., Zhang, S. Y., & Chiang, M. (2007). Distributed rate allocation for inelastic flows. IEEE/ACM Transactions on Networking, 15(6), 1240–1253.CrossRef
29.
go back to reference Shenker, S. (1995). Fundamental design issues for the future internet. IEEE Journal on Selected Areas in Communications, 13(7), 1176–1188.CrossRef Shenker, S. (1995). Fundamental design issues for the future internet. IEEE Journal on Selected Areas in Communications, 13(7), 1176–1188.CrossRef
30.
go back to reference Bertsekas, D. P. (1996). Constrained optimization and lgrange multiplier method. Belmont: Athena Scientific. Bertsekas, D. P. (1996). Constrained optimization and lgrange multiplier method. Belmont: Athena Scientific.
31.
go back to reference Bertsekas, D. P., Lauer, G. S., Sandell, N. R., et al. (1983). Optimal short-term scheduling of large-scale power systems. IEEE Transactions on Automatic Control, 28(1), 1–11.CrossRef Bertsekas, D. P., Lauer, G. S., Sandell, N. R., et al. (1983). Optimal short-term scheduling of large-scale power systems. IEEE Transactions on Automatic Control, 28(1), 1–11.CrossRef
32.
go back to reference Kim, K., Han, Y., & Kim, S.-L. (2005). Joint subcarrier and power allocation in uplink OFDMA systems. IEEE Communications Letters, 9(6), 526–528.CrossRef Kim, K., Han, Y., & Kim, S.-L. (2005). Joint subcarrier and power allocation in uplink OFDMA systems. IEEE Communications Letters, 9(6), 526–528.CrossRef
Metadata
Title
Distributed joint subcarrier and discrete power allocation for cognitive radio ad hoc networks
Authors
Fei Wang
Songtao Guo
Yawei Shi
Xiaofeng Liao
Publication date
01-10-2016
Publisher
Springer US
Published in
Telecommunication Systems / Issue 2/2016
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-015-0103-9

Other articles of this Issue 2/2016

Telecommunication Systems 2/2016 Go to the issue