Skip to main content
Top

2013 | OriginalPaper | Chapter

8. DNA-Directed Assembly of Nanophase Materials: An Updated Review

Authors : Huiqiao Wang, Zhaoxiang Deng

Published in: DNA Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

DNA nanotechnology makes use of DNA strands to build highly engineerable supramolecular structures from the bottom-up. Such a research field has been experiencing a fruitful development during the past decades. In materials science, an ambitious goal is to obtain materials with designable structures and predictable functions based on a suitable synthetic strategy. The rapid growth and expansion of the area of DNA nanotechnology have provided a useful technological platform suitable to demonstrate DNA’s unique roles in nanomaterials science. Although nanoparticle-based materials have been employed for controllable DNA conjugation and DNA-programmable self-assembly, some challenges still exist. In this chapter, we try to highlight the latest developments in DNA-directed nanophase materials, including new strategies for DNA decoration of gold and carbon-based nanomaterials, DNA origami-based nanoassembly templates, and DNA-conjugated non-gold nanoparticles with specifiable bonding valences, in response to the challenges we are currently facing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247CrossRef Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247CrossRef
3.
go back to reference Zheng JP, Birktoft JJ, Chen Y, Wang T, Sha RJ, Constantinou PE, Ginell SL, Mao CD, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77CrossRef Zheng JP, Birktoft JJ, Chen Y, Wang T, Sha RJ, Constantinou PE, Ginell SL, Mao CD, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77CrossRef
4.
go back to reference Pinheiro AV, Han DR, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772CrossRef Pinheiro AV, Han DR, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772CrossRef
5.
go back to reference Deng ZX, Lee SH, Mao CD (2005) DNA as nanoscale building blocks. J Nanosci Nanotechnol 5:1954–1963CrossRef Deng ZX, Lee SH, Mao CD (2005) DNA as nanoscale building blocks. J Nanosci Nanotechnol 5:1954–1963CrossRef
6.
go back to reference Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799CrossRef Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799CrossRef
7.
go back to reference Lin CX, Liu Y, Rinker S, Yan H (2006) DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7:1641–1647CrossRef Lin CX, Liu Y, Rinker S, Yan H (2006) DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7:1641–1647CrossRef
8.
9.
go back to reference Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276CrossRef Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276CrossRef
10.
go back to reference Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391CrossRef Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391CrossRef
11.
go back to reference Deng ZX, Chen Y, Tian Y, Mao CD (2006) A fresh look at DNA nanotechnology. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Heidelberg, pp 23–24 Deng ZX, Chen Y, Tian Y, Mao CD (2006) A fresh look at DNA nanotechnology. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Heidelberg, pp 23–24
12.
go back to reference Zheng YQ, Deng ZX (2011) Nanostructures and nanomaterials via DNA-based self-assembly. In: Jin JI, Grote J (eds) Materials science of DNA. CRC, Boca Raton, pp 13–48CrossRef Zheng YQ, Deng ZX (2011) Nanostructures and nanomaterials via DNA-based self-assembly. In: Jin JI, Grote J (eds) Materials science of DNA. CRC, Boca Raton, pp 13–48CrossRef
13.
go back to reference Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRef Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRef
14.
go back to reference Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611 Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611
15.
go back to reference Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317CrossRef Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317CrossRef
16.
go back to reference Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38:1808–1812CrossRef Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38:1808–1812CrossRef
17.
go back to reference Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35CrossRef Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35CrossRef
18.
go back to reference Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36CrossRef Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36CrossRef
19.
go back to reference Deng ZX, Tian Y, Lee SH, Ribbe AE, Mao CD (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 44:3582–3585CrossRef Deng ZX, Tian Y, Lee SH, Ribbe AE, Mao CD (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 44:3582–3585CrossRef
20.
go back to reference Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645CrossRef Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645CrossRef
21.
go back to reference Liu DY, Daubendiek SL, Zillman MA, Ryan K, Kool ET (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 118:1587–1594CrossRef Liu DY, Daubendiek SL, Zillman MA, Ryan K, Kool ET (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 118:1587–1594CrossRef
22.
go back to reference Deng ZX, Mao CD (2003) DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett 3:1545–1548CrossRef Deng ZX, Mao CD (2003) DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett 3:1545–1548CrossRef
23.
go back to reference Sharma J, Chhabra R, Liu Y, Ke YG, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45:730–735CrossRef Sharma J, Chhabra R, Liu Y, Ke YG, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45:730–735CrossRef
24.
go back to reference Zheng JW, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6:1502–1504CrossRef Zheng JW, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6:1502–1504CrossRef
25.
go back to reference Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459CrossRef Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459CrossRef
26.
go back to reference Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323:112–116CrossRef Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323:112–116CrossRef
27.
go back to reference Shen XB, Song C, Wang JY, Shi DW, Wang ZG, Liu N, Ding BQ (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134:146–149CrossRef Shen XB, Song C, Wang JY, Shi DW, Wang ZG, Liu N, Ding BQ (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134:146–149CrossRef
28.
go back to reference Xing H, Wang ZD, Xu ZD, Wong NY, Xiang Y, Liu GL, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 6:802–809CrossRef Xing H, Wang ZD, Xu ZD, Wong NY, Xiang Y, Liu GL, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 6:802–809CrossRef
29.
go back to reference Huo FW, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306CrossRef Huo FW, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306CrossRef
30.
go back to reference Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the yield of mono-DNA-functionalized gold nanoparticles through dual steric hindrance. J Am Chem Soc 133:15284–15287CrossRef Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the yield of mono-DNA-functionalized gold nanoparticles through dual steric hindrance. J Am Chem Soc 133:15284–15287CrossRef
31.
go back to reference Maye MM, Nykypanchuk D, Cuisinier M, van der Lelie D, Gang O (2009) Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 8:388–391CrossRef Maye MM, Nykypanchuk D, Cuisinier M, van der Lelie D, Gang O (2009) Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 8:388–391CrossRef
32.
go back to reference Kim JW, Kim JH, Deaton R (2011) DNA-linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed 50:9185–9190CrossRef Kim JW, Kim JH, Deaton R (2011) DNA-linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed 50:9185–9190CrossRef
33.
go back to reference Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302CrossRef Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302CrossRef
34.
go back to reference Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem Int Ed 49:1414–1417CrossRef Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem Int Ed 49:1414–1417CrossRef
35.
go back to reference Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50:2041–2044CrossRef Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50:2041–2044CrossRef
36.
go back to reference Pal S, Deng ZT, Wang HN, Zou SL, Liu Y, Yan H (2011) DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc 133:17606–17609CrossRef Pal S, Deng ZT, Wang HN, Zou SL, Liu Y, Yan H (2011) DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc 133:17606–17609CrossRef
37.
go back to reference Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM, H\( \ddot{\rm o}\)gele A, Simmel FC, GovorovAO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314CrossRef Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM, H\( \ddot{\rm o}\)gele A, Simmel FC, GovorovAO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314CrossRef
38.
go back to reference Li YL, Zheng YQ, Gong M, Deng ZX (2012) Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures. Chem Commun 48:3727–3729CrossRef Li YL, Zheng YQ, Gong M, Deng ZX (2012) Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures. Chem Commun 48:3727–3729CrossRef
39.
go back to reference Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205CrossRef Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205CrossRef
40.
go back to reference Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem Commun 45:6059–6061 Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem Commun 45:6059–6061
41.
go back to reference Pal S, Deng ZT, Ding BQ, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700–2704CrossRef Pal S, Deng ZT, Ding BQ, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700–2704CrossRef
42.
go back to reference Carstairs HMJ, Lymperopoulos K, Kapanidis AN, Bath J, Turberfield AJ (2009) DNA monofunctionalization of quantum dots. Chembiochem 10:1781–1783CrossRef Carstairs HMJ, Lymperopoulos K, Kapanidis AN, Bath J, Turberfield AJ (2009) DNA monofunctionalization of quantum dots. Chembiochem 10:1781–1783CrossRef
43.
go back to reference Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126:10832–10833CrossRef Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126:10832–10833CrossRef
44.
go back to reference Lee JH, Wernette DP, Yigit MV, Liu JW, Wang ZD, Lu Y (2007) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010CrossRef Lee JH, Wernette DP, Yigit MV, Liu JW, Wang ZD, Lu Y (2007) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010CrossRef
45.
go back to reference Ma N, Sargent EH, Kelley SO (2009) One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125CrossRef Ma N, Sargent EH, Kelley SO (2009) One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125CrossRef
46.
go back to reference Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490CrossRef Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490CrossRef
47.
go back to reference Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef
48.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
49.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
50.
go back to reference Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761CrossRef Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761CrossRef
51.
go back to reference Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc 127:14–15CrossRef Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc 127:14–15CrossRef
52.
go back to reference Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256CrossRef Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256CrossRef
53.
go back to reference Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRef Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRef
54.
go back to reference Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRef Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRef
55.
go back to reference Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548CrossRef Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548CrossRef
56.
go back to reference Tu XM, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253CrossRef Tu XM, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253CrossRef
57.
go back to reference Li YL, Han XG, Deng ZX (2007) Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. Angew Chem Int Ed 46:7481–7484CrossRef Li YL, Han XG, Deng ZX (2007) Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. Angew Chem Int Ed 46:7481–7484CrossRef
58.
go back to reference Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66CrossRef Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66CrossRef
59.
go back to reference Han XG, Li YL, Deng ZX (2007) DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522CrossRef Han XG, Li YL, Deng ZX (2007) DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522CrossRef
60.
61.
go back to reference Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334CrossRef Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334CrossRef
62.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
63.
go back to reference Liu JB, Li YL, Li YM, Li JH, Deng ZX (2010) Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J Mater Chem 20:900–906CrossRef Liu JB, Li YL, Li YM, Li JH, Deng ZX (2010) Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J Mater Chem 20:900–906CrossRef
64.
go back to reference Cao YW, Jin RC, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962CrossRef Cao YW, Jin RC, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962CrossRef
65.
go back to reference Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115CrossRef Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115CrossRef
66.
go back to reference Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589CrossRef Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589CrossRef
67.
go back to reference Zheng YQ, Li YL, Deng ZX (2012) Silver-nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162CrossRef Zheng YQ, Li YL, Deng ZX (2012) Silver-nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162CrossRef
Metadata
Title
DNA-Directed Assembly of Nanophase Materials: An Updated Review
Authors
Huiqiao Wang
Zhaoxiang Deng
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36077-0_8

Premium Partners