Skip to main content
Top
Published in: Journal of Materials Science 9/2015

01-05-2015 | Original Paper

Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach

Authors: Olena Okhay, Rahul Krishna, Alexander Tkach, Mathias Kläui, Luis M. Guerra, João Ventura, Elby Titus, Jose J.A. Gracio

Published in: Journal of Materials Science | Issue 9/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Strong increase in electrical conductivity of graphene oxide (GO) (I ≈ 10−9 A) is found by addition of Ni nanoparticles (NiNPs) preliminarily solved by HCl (Nisol) (I ≈ 10−4 A) or powder (Nipow) obtained from this solution (I ≈ 10−6 A), while simply mixing GO with NiNPs an insulator similar to pure GO is obtained. Thus, Nisol and Nipow can be used to transform GO from insulator to semiconductor. One of the transformation mechanisms is Ni as spillover. At the same time, different kinds of the magnetic response are obtained on GO and reduced GO (rGO) samples with and without Ni. Weak paramagnetic response is detected in pure GO. Stronger paramagnetic behavior is observed for GO and rGO mixed with Nisol or Nipow. Pure rGO sample shows weak ferromagnetism represented by slim but visible hysteresis with remnant magnetization M r of 0.05 emu/g. GO with NiNPs presents clear hysteresis with M r of 2.8 emu/g, while sample prepared by addition of NiNPs to rGO presents the largest hysteresis with M r as high as 11.8 emu/g. Thus, the optimal procedure to obtain the magnetic response requested for particular application can be chosen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5CrossRef Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5CrossRef
2.
3.
go back to reference Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5CrossRef Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5CrossRef
4.
go back to reference Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388CrossRef Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388CrossRef
5.
go back to reference Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415CrossRef Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415CrossRef
6.
go back to reference Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4 Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4
7.
go back to reference Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4 Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4
8.
go back to reference Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722CrossRef Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722CrossRef
9.
go back to reference Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5CrossRef Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5CrossRef
10.
go back to reference Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef
11.
go back to reference Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747CrossRef Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747CrossRef
12.
go back to reference Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4 Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4
13.
go back to reference Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10CrossRef Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10CrossRef
14.
go back to reference Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef
15.
go back to reference Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022CrossRef Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022CrossRef
16.
go back to reference Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5CrossRef Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5CrossRef
17.
go back to reference Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397CrossRef Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397CrossRef
18.
go back to reference Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869CrossRef Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869CrossRef
19.
go back to reference Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79CrossRef Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79CrossRef
20.
go back to reference Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912CrossRef Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912CrossRef
21.
go back to reference Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRef Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRef
22.
go back to reference Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215CrossRef Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215CrossRef
23.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
24.
go back to reference Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, BerlinCrossRef Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, BerlinCrossRef
25.
go back to reference Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, London Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, London
26.
go back to reference Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle River Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle River
27.
go back to reference Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459CrossRef Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459CrossRef
28.
go back to reference Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158CrossRef Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158CrossRef
29.
go back to reference Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305CrossRef Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305CrossRef
30.
go back to reference Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New York Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New York
31.
go back to reference Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266 Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266
32.
go back to reference Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31CrossRef Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31CrossRef
33.
go back to reference Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3 Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3
34.
go back to reference Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534CrossRef Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534CrossRef
35.
go back to reference Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4 Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4
36.
go back to reference Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef
37.
go back to reference Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985CrossRef Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985CrossRef
38.
go back to reference Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782CrossRef Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782CrossRef
Metadata
Title
Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach
Authors
Olena Okhay
Rahul Krishna
Alexander Tkach
Mathias Kläui
Luis M. Guerra
João Ventura
Elby Titus
Jose J.A. Gracio
Publication date
01-05-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8901-8

Other articles of this Issue 9/2015

Journal of Materials Science 9/2015 Go to the issue

Premium Partners