Skip to main content
Erschienen in: Journal of Materials Science 9/2015

01.05.2015 | Original Paper

Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach

verfasst von: Olena Okhay, Rahul Krishna, Alexander Tkach, Mathias Kläui, Luis M. Guerra, João Ventura, Elby Titus, Jose J.A. Gracio

Erschienen in: Journal of Materials Science | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strong increase in electrical conductivity of graphene oxide (GO) (I ≈ 10−9 A) is found by addition of Ni nanoparticles (NiNPs) preliminarily solved by HCl (Nisol) (I ≈ 10−4 A) or powder (Nipow) obtained from this solution (I ≈ 10−6 A), while simply mixing GO with NiNPs an insulator similar to pure GO is obtained. Thus, Nisol and Nipow can be used to transform GO from insulator to semiconductor. One of the transformation mechanisms is Ni as spillover. At the same time, different kinds of the magnetic response are obtained on GO and reduced GO (rGO) samples with and without Ni. Weak paramagnetic response is detected in pure GO. Stronger paramagnetic behavior is observed for GO and rGO mixed with Nisol or Nipow. Pure rGO sample shows weak ferromagnetism represented by slim but visible hysteresis with remnant magnetization M r of 0.05 emu/g. GO with NiNPs presents clear hysteresis with M r of 2.8 emu/g, while sample prepared by addition of NiNPs to rGO presents the largest hysteresis with M r as high as 11.8 emu/g. Thus, the optimal procedure to obtain the magnetic response requested for particular application can be chosen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5CrossRef Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5CrossRef
2.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
3.
Zurück zum Zitat Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5CrossRef Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5CrossRef
4.
Zurück zum Zitat Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388CrossRef Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388CrossRef
5.
Zurück zum Zitat Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415CrossRef Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415CrossRef
6.
Zurück zum Zitat Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4 Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4
7.
Zurück zum Zitat Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4 Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4
8.
Zurück zum Zitat Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722CrossRef Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722CrossRef
9.
Zurück zum Zitat Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5CrossRef Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5CrossRef
10.
Zurück zum Zitat Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef
11.
Zurück zum Zitat Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747CrossRef Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747CrossRef
12.
Zurück zum Zitat Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4 Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4
13.
Zurück zum Zitat Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10CrossRef Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10CrossRef
14.
Zurück zum Zitat Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef
15.
Zurück zum Zitat Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022CrossRef Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022CrossRef
16.
Zurück zum Zitat Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5CrossRef Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5CrossRef
17.
Zurück zum Zitat Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397CrossRef Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397CrossRef
18.
Zurück zum Zitat Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869CrossRef Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869CrossRef
19.
Zurück zum Zitat Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79CrossRef Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79CrossRef
20.
Zurück zum Zitat Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912CrossRef Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912CrossRef
21.
Zurück zum Zitat Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRef Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRef
22.
Zurück zum Zitat Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215CrossRef Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215CrossRef
23.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
24.
Zurück zum Zitat Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, BerlinCrossRef Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, BerlinCrossRef
25.
Zurück zum Zitat Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, London Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, London
26.
Zurück zum Zitat Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle River Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle River
27.
Zurück zum Zitat Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459CrossRef Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459CrossRef
28.
Zurück zum Zitat Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158CrossRef Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158CrossRef
29.
Zurück zum Zitat Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305CrossRef Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305CrossRef
30.
Zurück zum Zitat Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New York Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New York
31.
Zurück zum Zitat Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266 Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266
32.
Zurück zum Zitat Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31CrossRef Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31CrossRef
33.
Zurück zum Zitat Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3 Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3
34.
Zurück zum Zitat Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534CrossRef Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534CrossRef
35.
Zurück zum Zitat Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4 Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4
36.
Zurück zum Zitat Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef
37.
Zurück zum Zitat Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985CrossRef Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985CrossRef
38.
Zurück zum Zitat Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782CrossRef Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782CrossRef
Metadaten
Titel
Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach
verfasst von
Olena Okhay
Rahul Krishna
Alexander Tkach
Mathias Kläui
Luis M. Guerra
João Ventura
Elby Titus
Jose J.A. Gracio
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8901-8

Weitere Artikel der Ausgabe 9/2015

Journal of Materials Science 9/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.