Skip to main content
Top
Published in: Journal of Electronic Materials 10/2023

26-07-2023 | Original Research Article

Dual-Gate Silicon Nanowire FET with a Corner Spacer for High-Performance and High-Frequency Applications

Authors: Mandeep Singh Narula, Archana Pandey

Published in: Journal of Electronic Materials | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Parasitic capacitance in extremely scaled devices is a major issue in device/circuit design. Its contribution to the total device capacitance is very large, especially in nanowire field-effect transistors (FET), which results in poor radio frequency (RF) performance, leading to low values of the maximum oscillation frequency fMAXand cut-off frequency fT. In this work, we have used a corner spacer in a novel dual-gate silicon nanowire FET. A coaxial inner gate has been used in addition to the outer gate, and the channel is sandwiched between them, resulting in a higher drive current, lower threshold voltage, better short-channel performance, and an overall improved performance. This gate/channel engineered nanowire FET with a coaxial inner gate has not been previously reported. We have shown that the parasitic capacitance of nanowire with a corner spacer design is 28.6% less than nanowire FET with a full nitride spacer. Moreover, the fMAX and fT of the corner spacer design are 30.2% and 15.7% higher than those of the nanowire FET with full nitride spacer design. In this work, we have shown that a well-designed nanowire with a corner spacer can enhance the device performance for sub-10-nm technology nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Munjal, N.R. Prakash, and J. Kaur, Evolution of junctionless field effect transistors in semiconductor industry: a review. Int. J. Innov. Sci. Eng. Technol. 8, 94 (2021). S. Munjal, N.R. Prakash, and J. Kaur, Evolution of junctionless field effect transistors in semiconductor industry: a review. Int. J. Innov. Sci. Eng. Technol. 8, 94 (2021).
2.
go back to reference U.K. Das and T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron. Devices 67, 2633 (2020).CrossRef U.K. Das and T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron. Devices 67, 2633 (2020).CrossRef
3.
go back to reference A. Kumar, S. Saini, A. Gupta, N. Gupta, M.M. Tripathi, R. Chaujar, Sub-10 nm high-k dielectric SOI-FinFET for high performance low power applications. International Conference on Signal Processing and Communication 310 (2020). A. Kumar, S. Saini, A. Gupta, N. Gupta, M.M. Tripathi, R. Chaujar, Sub-10 nm high-k dielectric SOI-FinFET for high performance low power applications. International Conference on Signal Processing and Communication 310 (2020).
4.
go back to reference J.C. Pravin, P. Prajoon, F.P. Nesamania, P.S. Kumar, D. Nirmal, and G. Srikesh, Nanoscale high k dielectrics for junctionless nanowire transistor for drain current analysis. J. Electron. Mater. 47, 2679 (2018).CrossRef J.C. Pravin, P. Prajoon, F.P. Nesamania, P.S. Kumar, D. Nirmal, and G. Srikesh, Nanoscale high k dielectrics for junctionless nanowire transistor for drain current analysis. J. Electron. Mater. 47, 2679 (2018).CrossRef
5.
go back to reference S.M. Sharma, A. Singh, S. Dasgupta, and M.V. Kartikeyan, A review on the compact modeling of parasitic capacitance: from basic to advanced FETs. J. Comput. Electron. 3, 1116–1125 (2020).CrossRef S.M. Sharma, A. Singh, S. Dasgupta, and M.V. Kartikeyan, A review on the compact modeling of parasitic capacitance: from basic to advanced FETs. J. Comput. Electron. 3, 1116–1125 (2020).CrossRef
6.
go back to reference R.R. Vallabhuni, G. Yamini, T. Vinitha, Performance analysis: D-Latch modules designed using 18nm FinFET Technology. International Conference on Smart Electronics and Communication 1169 (2021) R.R. Vallabhuni, G. Yamini, T. Vinitha, Performance analysis: D-Latch modules designed using 18nm FinFET Technology. International Conference on Smart Electronics and Communication 1169 (2021)
7.
go back to reference V. K. Sharma, Design and simulation of FinFET circuits at different technologies. International Conference on Inventive Computational Technologies 1 (2021) V. K. Sharma, Design and simulation of FinFET circuits at different technologies. International Conference on Inventive Computational Technologies 1 (2021)
8.
go back to reference R. Huang, R. Wang, J. Zhuge, C. Liu, T. Yu, L. Zhang, X. Huang, Y. Ai, J. Zou, Y. Liu, Characterization and analysis of gate-all-around si nanowire transistors for extreme scaling. IEEE Custom Integrated Circuit’s Conference 1 (2011) R. Huang, R. Wang, J. Zhuge, C. Liu, T. Yu, L. Zhang, X. Huang, Y. Ai, J. Zou, Y. Liu, Characterization and analysis of gate-all-around si nanowire transistors for extreme scaling. IEEE Custom Integrated Circuit’s Conference 1 (2011)
9.
go back to reference N. Moezi and M. Karbalaei, Predictive physics based simulation of Nano scale gate-allaround field effect transistor under the influence of high-k gate dielectrics. J. Nanostruct. 10, 736 (2020). N. Moezi and M. Karbalaei, Predictive physics based simulation of Nano scale gate-allaround field effect transistor under the influence of high-k gate dielectrics. J. Nanostruct. 10, 736 (2020).
10.
go back to reference C. Zhang and X. Li, III–V nanowire transistors for low-power logic applications: a review and outlook. IEEE Trans. Electron. Dev. 63, 223 (2016).CrossRef C. Zhang and X. Li, III–V nanowire transistors for low-power logic applications: a review and outlook. IEEE Trans. Electron. Dev. 63, 223 (2016).CrossRef
11.
go back to reference F.M. Bufler, R. Ritzenthaler, H. Mertens, G. Eneman, A. Mocuta, and N. Horiguchi, Performance comparison of n-type Si nanowires, Nanosheets, and FinFETs by MC device simulation. IEEE Electron. Dev. Lett. 39, 1628 (2018).CrossRef F.M. Bufler, R. Ritzenthaler, H. Mertens, G. Eneman, A. Mocuta, and N. Horiguchi, Performance comparison of n-type Si nanowires, Nanosheets, and FinFETs by MC device simulation. IEEE Electron. Dev. Lett. 39, 1628 (2018).CrossRef
12.
go back to reference S. Seifollahi, S.S. Ziabari, and A.K. Sarkaleh, A design of nanoscale double-gate FET based ring oscillator with improved oscillation frequency using device engineering. Int. J. Electron. Commun. 134, 153 (2021).CrossRef S. Seifollahi, S.S. Ziabari, and A.K. Sarkaleh, A design of nanoscale double-gate FET based ring oscillator with improved oscillation frequency using device engineering. Int. J. Electron. Commun. 134, 153 (2021).CrossRef
13.
go back to reference T. Song, A 3-nm gate-all-around SRAM featuring an adaptive dual-Bitline and an adaptive cell-power assist circuit. IEEE J. Solid State Circuits 57, 236 (2022).CrossRef T. Song, A 3-nm gate-all-around SRAM featuring an adaptive dual-Bitline and an adaptive cell-power assist circuit. IEEE J. Solid State Circuits 57, 236 (2022).CrossRef
14.
go back to reference C. Li, F. Liu, R. Han, Y. Zhuang, A vertically stacked Nanosheet gate-all-around FET for biosensing application. IEEE Access 9 (2021) C. Li, F. Liu, R. Han, Y. Zhuang, A vertically stacked Nanosheet gate-all-around FET for biosensing application. IEEE Access 9 (2021)
15.
go back to reference I.A. Pindoo, S.K. Sinha, and S. Chander, Performance analysis of heterojunction tunnel FET device with variable temperature. Appl. Phys. 127, 747 (2021).CrossRef I.A. Pindoo, S.K. Sinha, and S. Chander, Performance analysis of heterojunction tunnel FET device with variable temperature. Appl. Phys. 127, 747 (2021).CrossRef
16.
go back to reference K. Vanlalawmpuia, and B. Bhowmick, Optimization of a heterostructure vertical tunnel FET for enhanced electrical performance and effects of temperature variation on RF/linearity parameters. SILICON 13, 155 (2021).CrossRef K. Vanlalawmpuia, and B. Bhowmick, Optimization of a heterostructure vertical tunnel FET for enhanced electrical performance and effects of temperature variation on RF/linearity parameters. SILICON 13, 155 (2021).CrossRef
17.
go back to reference C. Liu, New challenges of design for reliability in advanced technology node. IEEE Electron Devices Technology & Manufacturing Conference 1 (2020) C. Liu, New challenges of design for reliability in advanced technology node. IEEE Electron Devices Technology & Manufacturing Conference 1 (2020)
18.
go back to reference A. Razavieh, P. Zeitzoff, and E.J. Nowak, Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999 (2019).CrossRef A. Razavieh, P. Zeitzoff, and E.J. Nowak, Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999 (2019).CrossRef
19.
go back to reference M. Uddin, M. Athiya, N.A. Masud, and H. Chowdhury, Fin-FET based SRAMs in sub-10nm domain. Microelectron. J. 114, 231 (2021). M. Uddin, M. Athiya, N.A. Masud, and H. Chowdhury, Fin-FET based SRAMs in sub-10nm domain. Microelectron. J. 114, 231 (2021).
20.
go back to reference V. R. Ratna, M. Sarithab, V. Saipreethi, P.C. Vijayb, M. D. Shaker, High speed energy efficient multiplier using 20nm FinFET technology. International Conference on IoT Based Control Network Intel Systems 35 (2020). V. R. Ratna, M. Sarithab, V. Saipreethi, P.C. Vijayb, M. D. Shaker, High speed energy efficient multiplier using 20nm FinFET technology. International Conference on IoT Based Control Network Intel Systems 35 (2020).
21.
go back to reference R. Gadarapulla and S. Sriadibhatla, Tunnel FET based SRAM cells—a comparative review. Int. Conf. Microelectron. Dev. Circuits Syst. 1392, 217 (2021).CrossRef R. Gadarapulla and S. Sriadibhatla, Tunnel FET based SRAM cells—a comparative review. Int. Conf. Microelectron. Dev. Circuits Syst. 1392, 217 (2021).CrossRef
22.
go back to reference J. Kedzierski, Extension and source/drain design for high-performance FinFET devices. IEEE Trans. Electron. Dev. 50, 952 (2003).CrossRef J. Kedzierski, Extension and source/drain design for high-performance FinFET devices. IEEE Trans. Electron. Dev. 50, 952 (2003).CrossRef
23.
go back to reference C. Auth, A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology 131 (2021) C. Auth, A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology 131 (2021)
24.
go back to reference S. Natarajan, A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size. IEEE International Electron Devices Meeting (2014) S. Natarajan, A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size. IEEE International Electron Devices Meeting (2014)
25.
go back to reference International Technology Roadmap for Semiconductors 2.0 (2017) International Technology Roadmap for Semiconductors 2.0 (2017)
26.
go back to reference A. Sachid and M. Cheng, Bulk FinFET With low-κ spacers for continued scaling. IEEE Trans. Electron. Dev. 64, 1861 (2017).CrossRef A. Sachid and M. Cheng, Bulk FinFET With low-κ spacers for continued scaling. IEEE Trans. Electron. Dev. 64, 1861 (2017).CrossRef
27.
go back to reference V. P. Hu, C. T. Lo, A. B. Sachid, P. Su, C. Hu, Corner spacer design for performance optimization of multi-gate InGaAs-OI FinFET with gate-to-source/drain underlap. International Symposium on VLSI Technology, Systems and Application 1 (2016) V. P. Hu, C. T. Lo, A. B. Sachid, P. Su, C. Hu, Corner spacer design for performance optimization of multi-gate InGaAs-OI FinFET with gate-to-source/drain underlap. International Symposium on VLSI Technology, Systems and Application 1 (2016)
28.
go back to reference S. Bangsaruntip, Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond. IEEE International Electron Devices Meeting, Washington, DC, USA (2013) S. Bangsaruntip, Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond. IEEE International Electron Devices Meeting, Washington, DC, USA (2013)
29.
go back to reference B.H. Lee, L. Kang, R. Nieh, and J.C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926 (2000).CrossRef B.H. Lee, L. Kang, R. Nieh, and J.C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926 (2000).CrossRef
30.
go back to reference D. Nirmal, P. Kumar, D.M. Thomas, B.K. Jebalin, and N. Kumar, Subthreshold performance of gate engineered FinFET devices and circuit with high-k dielectrics. Microelectron. Reliab. 53, 499 (2013).CrossRef D. Nirmal, P. Kumar, D.M. Thomas, B.K. Jebalin, and N. Kumar, Subthreshold performance of gate engineered FinFET devices and circuit with high-k dielectrics. Microelectron. Reliab. 53, 499 (2013).CrossRef
31.
go back to reference J.P. Charles, D. Nirmal, P. Prajoon, and J. Ajayan, Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power application. Physica E 83, 95 (2016).CrossRef J.P. Charles, D. Nirmal, P. Prajoon, and J. Ajayan, Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power application. Physica E 83, 95 (2016).CrossRef
32.
go back to reference N.F. Kosmani, A. Fatimah, and M. Hamid, Effects of high-k dielectric materials on electrical performance of double gate and gate-all-around MOSFET. Int. J. Integr. Eng. 12, 81 (2020). N.F. Kosmani, A. Fatimah, and M. Hamid, Effects of high-k dielectric materials on electrical performance of double gate and gate-all-around MOSFET. Int. J. Integr. Eng. 12, 81 (2020).
33.
go back to reference N. Gupta, A. Kumar, and R. Chaujar, Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14, 798 (2015).CrossRef N. Gupta, A. Kumar, and R. Chaujar, Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14, 798 (2015).CrossRef
34.
go back to reference D. Nagy, G. Indalecio, A.J. GarcíA-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, FinFET versus gate-all-around nanowire FET: performance, scaling and variability. IEEE J. Electron. Dev. Soc. 6, 332 (2018).CrossRef D. Nagy, G. Indalecio, A.J. GarcíA-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, FinFET versus gate-all-around nanowire FET: performance, scaling and variability. IEEE J. Electron. Dev. Soc. 6, 332 (2018).CrossRef
35.
go back to reference Y. Sun, Y. Tang, X. Li, Y. Shi, T. Wang, X. Jun, and Z. Liu, Analysis of gate-induced drain leakage in gate-all-around nanowire transistors. J. Comput. Electron. 19, 1463 (2020).CrossRef Y. Sun, Y. Tang, X. Li, Y. Shi, T. Wang, X. Jun, and Z. Liu, Analysis of gate-induced drain leakage in gate-all-around nanowire transistors. J. Comput. Electron. 19, 1463 (2020).CrossRef
36.
go back to reference B. Nae, A. Lazaro, B. Iniguez, High frequency and noise model of gate-all-around MOSFETs. Spanish Conference on Electronics Devices 112 (2009) B. Nae, A. Lazaro, B. Iniguez, High frequency and noise model of gate-all-around MOSFETs. Spanish Conference on Electronics Devices 112 (2009)
Metadata
Title
Dual-Gate Silicon Nanowire FET with a Corner Spacer for High-Performance and High-Frequency Applications
Authors
Mandeep Singh Narula
Archana Pandey
Publication date
26-07-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10597-2

Other articles of this Issue 10/2023

Journal of Electronic Materials 10/2023 Go to the issue