Skip to main content
Top
Published in: Telecommunication Systems 1/2016

01-01-2016

Dyn-ARF: a rate adaptation mechanism sensitive to the network load over 802.11 WLANs

Authors: Maria Angeles Santos, José Miguel Villalón, Luis Orozco-Barbosa

Published in: Telecommunication Systems | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the first version of the IEEE 802.11, the standard committee has included a set of transmission rates aiming to accommodate the wide variety of requirements of end-user devices and channel operating conditions. Traditionally, the sender increases the data transmission rate upon receiving various consecutive acknowledgement packets while the data transmission rate is decreased on the absence of acknowledgement packets. This error-control procedure assumes that the channel operating conditions are the main source of transmission errors and losses. However, under medium or high load conditions, transmission impairments are mainly due to channel access conflicts: collisions. Under these load conditions, reducing the data transmission based exclusively on the absence of feedback not only proves ineffective, but it actually degrades the overall network performance. In this paper, we describe a novel rate adaptation mechanism capable of mitigating the effect of collisions using the information imbedded in the received packets. Simulation results show that our proposal limits the use of the data transmission adaptation mechanism which in turn results on a significant increase of the aggregated throughput.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
These values have been chosen after test several values in different simulation tests. Further studies will let to calculate these values dynamically as \(C_{dyn}\) and \(W_{dyn}\).
 
Literature
1.
go back to reference Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Congestion-aware rate adaptation in wireless networks: A measurement-driven approach. In IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON), (pp. 1–9). Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Congestion-aware rate adaptation in wireless networks: A measurement-driven approach. In IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON), (pp. 1–9).
2.
go back to reference Cardoso, K., & de Rezende, J. (2012). Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement. Wireless Networks, 8(1), 95–112.CrossRef Cardoso, K., & de Rezende, J. (2012). Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement. Wireless Networks, 8(1), 95–112.CrossRef
3.
go back to reference Ha, J., Lee, K., Kim, H., & Kang, I. (2008). A snooping rate adaptation algorithm for IEEE 802.11 WLANs. In International symposium on wireless pervasive computing (ISWPC), (pp. 606–609). Ha, J., Lee, K., Kim, H., & Kang, I. (2008). A snooping rate adaptation algorithm for IEEE 802.11 WLANs. In International symposium on wireless pervasive computing (ISWPC), (pp. 606–609).
4.
go back to reference Hamidian, A., & Krner, U. (2008). Extending EDCA with distributed resource reservation for QoS guarantees. Telecommunication Systems, 39(3–4), 187–194.CrossRef Hamidian, A., & Krner, U. (2008). Extending EDCA with distributed resource reservation for QoS guarantees. Telecommunication Systems, 39(3–4), 187–194.CrossRef
5.
go back to reference Heiskala, J., & Terry, J. (2001). OFDM wireless LANs: A theoretical and practical guide. Indianapolis: SAMS. Heiskala, J., & Terry, J. (2001). OFDM wireless LANs: A theoretical and practical guide. Indianapolis: SAMS.
6.
go back to reference Hoffmann, C., Manshaei, M. H., & Turletti., T. (2005). CLARA: Closed-loop adaptive rate allocation for IEEE wireless LANs. In Proceedings of the international conference on wireless networks, communications and mobile computing (WIRELESSCOM’05), (1, pp. 668–673). Hoffmann, C., Manshaei, M. H., & Turletti., T. (2005). CLARA: Closed-loop adaptive rate allocation for IEEE wireless LANs. In Proceedings of the international conference on wireless networks, communications and mobile computing (WIRELESSCOM’05), (1, pp. 668–673).
7.
go back to reference Holland, G., Vaidya, N. H., & Bahl., P. (2001). A rate-adaptive mac protocol for multi-hop wireless networks. In Proceedings of ACM MOBICOM’01, (pp. 236–251) Rome (Italy). Holland, G., Vaidya, N. H., & Bahl., P. (2001). A rate-adaptive mac protocol for multi-hop wireless networks. In Proceedings of ACM MOBICOM’01, (pp. 236–251) Rome (Italy).
8.
go back to reference IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. March 2012, Std 802.11-2012. IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. March 2012, Std 802.11-2012.
9.
go back to reference IEEE 802.11 WG. IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Std 802.11-1999. IEEE 802.11 WG. IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Std 802.11-1999.
10.
go back to reference IEEE 802.11a WG. IEEE 802.11a: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, high speed physical layer in the 5 GHz band (1999). IEEE 802.11a WG. IEEE 802.11a: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, high speed physical layer in the 5 GHz band (1999).
11.
go back to reference IEEE 802.11b WG. IEEE 802.11b: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, higher speed PHY extension in the 2.4 GHz band (1999). IEEE 802.11b WG. IEEE 802.11b: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, higher speed PHY extension in the 2.4 GHz band (1999).
12.
go back to reference IEEE 802.11e WG. IEEE 802.11e: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 8: Medium access control (MAC) quality of service enhancements (2005). IEEE 802.11e WG. IEEE 802.11e: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 8: Medium access control (MAC) quality of service enhancements (2005).
13.
go back to reference IEEE 802.11g WG. IEEE 802.11g: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, further higher data rate extension in the 2.4 GHz band (2003). IEEE 802.11g WG. IEEE 802.11g: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, further higher data rate extension in the 2.4 GHz band (2003).
14.
go back to reference Kamerman, A., & Monteban, L. (1997). WaveLAN(C)-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.CrossRef Kamerman, A., & Monteban, L. (1997). WaveLAN(C)-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.CrossRef
15.
go back to reference Kim, J., Kim, S., Choi, S., & Qiao, D. (2006). CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs. In 25th IEEE international conference on computer communications. Proceedings (INFOCOM 2006), (pp. 1–11). Kim, J., Kim, S., Choi, S., & Qiao, D. (2006). CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs. In 25th IEEE international conference on computer communications. Proceedings (INFOCOM 2006), (pp. 1–11).
16.
go back to reference Krzysztof, G., Aleksander, K., Jozef, W., & Krzysztof, N. (2011). Testbed analysis of video and VoIP transmission performance in IEEE 802.11 b/g/n networks. Telecommunication Systems, 48(3–4), 247–260. Krzysztof, G., Aleksander, K., Jozef, W., & Krzysztof, N. (2011). Testbed analysis of video and VoIP transmission performance in IEEE 802.11 b/g/n networks. Telecommunication Systems, 48(3–4), 247–260.
17.
go back to reference Kurth, M., Zubow, A., & Redlich, J. P. (2006). Multi-channel link-level measurements in 802.11 mesh networks. In International conference on wireless communications and mobile computing (IWCMC), (pp. 937–944). Kurth, M., Zubow, A., & Redlich, J. P. (2006). Multi-channel link-level measurements in 802.11 mesh networks. In International conference on wireless communications and mobile computing (IWCMC), (pp. 937–944).
18.
go back to reference Lacage, M., Manshaei, M.H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In Proceedings of the ACM international symposium on modeling, analysis, and simulation of wireless and mobile systems (MSWiM’04), (pp 126–134). Lacage, M., Manshaei, M.H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In Proceedings of the ACM international symposium on modeling, analysis, and simulation of wireless and mobile systems (MSWiM’04), (pp 126–134).
19.
20.
go back to reference Ni, Q. (2005). Performance analysis and enhancements for IEEE 802.11e wireless networks. IEEE Network, 19(4), 21–26.CrossRef Ni, Q. (2005). Performance analysis and enhancements for IEEE 802.11e wireless networks. IEEE Network, 19(4), 21–26.CrossRef
22.
go back to reference del Prado Pavon, J., & Choi, S. (2003). Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement. In IEEE international conference on communications (ICC), (2, pp. 1108–1113). del Prado Pavon, J., & Choi, S. (2003). Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement. In IEEE international conference on communications (ICC), (2, pp. 1108–1113).
23.
go back to reference Punnoose, R. J., Nikitin, P. V., & Stancil, D. (2000). Efficient simulation of ricean fading within a packet simulator. In 52nd vehicular technology conference, IEEE-VTS Fall VTC 2000. 2, (pp. 764–767). Punnoose, R. J., Nikitin, P. V., & Stancil, D. (2000). Efficient simulation of ricean fading within a packet simulator. In 52nd vehicular technology conference, IEEE-VTS Fall VTC 2000. 2, (pp. 764–767).
24.
go back to reference Santos, M. A., Villalón, J., Ramirez-Mireles, F., Orozco-Barbosa, L., & Delicado, J. (2011). A novel multicast collision prevention mechanism for IEEE 802.11. IEEE Communications Letters, 15(11), 1190–1192. Santos, M. A., Villalón, J., Ramirez-Mireles, F., Orozco-Barbosa, L., & Delicado, J. (2011). A novel multicast collision prevention mechanism for IEEE 802.11. IEEE Communications Letters, 15(11), 1190–1192.
25.
go back to reference Villalón, J., Cuenca, P., & Orozco-Barbosa, L. (2007). On the capabilities of IEEE 802.11e for multimedia communications over heterogeneous 802.11/802.11e WLANs. Telecommunication Systems, 36(1–3), 27–38. Villalón, J., Cuenca, P., & Orozco-Barbosa, L. (2007). On the capabilities of IEEE 802.11e for multimedia communications over heterogeneous 802.11/802.11e WLANs. Telecommunication Systems, 36(1–3), 27–38.
26.
go back to reference Villalón, J., Mió, F., Cuenca, P., & Orozco-Barbosa, L. (2010). Multiservice unicast/multicast communications over IEEE 802.11e networks. Telecommunication Systems, 43(1–2), 59–72. Villalón, J., Mió, F., Cuenca, P., & Orozco-Barbosa, L. (2010). Multiservice unicast/multicast communications over IEEE 802.11e networks. Telecommunication Systems, 43(1–2), 59–72.
27.
go back to reference Wong, S. H. Y., Yang, H., Lu, S., & Bharghavan, V. (2006). Robust rate adaptation for 802.11 wireless networks. In Procceedings of MobiCom 2006, (pp. 146–157). Los Angeles, California, USA. Wong, S. H. Y., Yang, H., Lu, S., & Bharghavan, V. (2006). Robust rate adaptation for 802.11 wireless networks. In Procceedings of MobiCom 2006, (pp. 146–157). Los Angeles, California, USA.
28.
go back to reference Xi, W., Munro, A., & Barton, M. (2008). Link adaptation algorithm for the IEEE 802.11n MIMO system. In NETWORKING 2008 ad hoc and sensor networks. In Wireless networks, next generation internet, (4982, pp. 780–791). Xi, W., Munro, A., & Barton, M. (2008). Link adaptation algorithm for the IEEE 802.11n MIMO system. In NETWORKING 2008 ad hoc and sensor networks. In Wireless networks, next generation internet, (4982, pp. 780–791).
Metadata
Title
Dyn-ARF: a rate adaptation mechanism sensitive to the network load over 802.11 WLANs
Authors
Maria Angeles Santos
José Miguel Villalón
Luis Orozco-Barbosa
Publication date
01-01-2016
Publisher
Springer US
Published in
Telecommunication Systems / Issue 1/2016
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-014-9949-5

Other articles of this Issue 1/2016

Telecommunication Systems 1/2016 Go to the issue