Skip to main content
Top
Published in: Meccanica 7/2023

19-05-2023

Dynamic failure behavior and characteristics of frozen soil under coupled compression–shear loading

Authors: Yanwei Wang, Zhiwu Zhu, Tao Li

Published in: Meccanica | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frozen soil is inevitably susceptible to complicated impact loads during construction in cold regions, where the coupled compression–shear load is particularly important. In this study, inclined cylindrical samples of frozen soil were employed to conduct coupled compression–shear impact experiments by using a split Hopkinson compression bar with a strain rate varying from 100 to 700 s−1. During the experiments, different compression–shear loading states can be assessed by adjusting the tilting angle of the samples. Furthermore, the Holmquist–Johnson–Cook material model was used to characterize the impact failure behaviors of frozen soil under coupled compression–shear loading using the LS-DYNA software. The results of the experiments and numerical simulations indicated that the strength, failure process, and failure mode of the frozen soil samples exhibited significant strain-rate sensitivity and a certain loading-path dependence. In contrast to the uniaxial impact loading state, the compressive strength was reduced owing to the influence of the shear stress component under coupled compression–shear impact loading. Based on the improved Drucker–Prager criterion, the strength characteristics were reflected on the failure surface, which was featured as a sector and expanded with an increasing strain rate. The inclined samples exhibited coupled tensile–shear failure rather than tensile failure of the right samples (0°) under a high strain rate. In addition, the fragmentation characteristics of frozen soil were closely related to its energy dissipation; with the increase in dissipated energy density, the fragmentation degree of frozen soil deepened.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Andersland O, Ladanyi B (2003) Frozen ground engineering. Wiley, Chichester Andersland O, Ladanyi B (2003) Frozen ground engineering. Wiley, Chichester
3.
go back to reference Liu E, Lai Y (2020) Thermo-poromechanics-based viscoplastic damage constitutive model for saturated frozen soil. Int J Plast 128:102683CrossRef Liu E, Lai Y (2020) Thermo-poromechanics-based viscoplastic damage constitutive model for saturated frozen soil. Int J Plast 128:102683CrossRef
4.
go back to reference Shastri A, Sánchez M, Gai X et al (2021) Mechanical behavior of frozen soils: experimental investigation and numerical modeling. Comput Geotech 138:104361CrossRef Shastri A, Sánchez M, Gai X et al (2021) Mechanical behavior of frozen soils: experimental investigation and numerical modeling. Comput Geotech 138:104361CrossRef
5.
go back to reference Bronfenbrener L, Bronfenbrener R (2012) A temperature behavior of frozen soils: field experiments and numerical solution. Cold Reg Sci Technol 79:84–91CrossRef Bronfenbrener L, Bronfenbrener R (2012) A temperature behavior of frozen soils: field experiments and numerical solution. Cold Reg Sci Technol 79:84–91CrossRef
6.
go back to reference Chang D, Lai Y, Zhang M (2019) A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory. Int J Mech Sci 159:246–259CrossRef Chang D, Lai Y, Zhang M (2019) A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory. Int J Mech Sci 159:246–259CrossRef
7.
go back to reference Liu E, Lai Y, Wong H et al (2018) An elastoplastic model for saturated freezing soils based on thermo-poromechanics. Int J Plast 107:246–285CrossRef Liu E, Lai Y, Wong H et al (2018) An elastoplastic model for saturated freezing soils based on thermo-poromechanics. Int J Plast 107:246–285CrossRef
8.
go back to reference Furnish M (1998) Measuring static and dynamic properties of frozen silty soils. Sandia National Lab., AlbuquerqueCrossRef Furnish M (1998) Measuring static and dynamic properties of frozen silty soils. Sandia National Lab., AlbuquerqueCrossRef
9.
go back to reference Lee M, Fossum A, Costin L et al (2002) Frozen soil material testing and constitutive modeling. Sandia National Lab., AlbuquerqueCrossRef Lee M, Fossum A, Costin L et al (2002) Frozen soil material testing and constitutive modeling. Sandia National Lab., AlbuquerqueCrossRef
10.
go back to reference Chen B, Hu S, Ma Q et al (2005) Experimental study on dynamic mechanical properties of frozen soil. Chin J Theor Appl Mech 37(6):54–58 Chen B, Hu S, Ma Q et al (2005) Experimental study on dynamic mechanical properties of frozen soil. Chin J Theor Appl Mech 37(6):54–58
11.
go back to reference Zhang F, Zhu Z, Fu T et al (2020) Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading. Mech Mater 140:103217CrossRef Zhang F, Zhu Z, Fu T et al (2020) Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading. Mech Mater 140:103217CrossRef
12.
go back to reference Zhang F, Zhu Z, Ma W et al (2021) A unified viscoplastic model and strain rate–temperature equivalence of frozen soil under impact loading. J Mech Phys Solids 152:104413MathSciNetCrossRef Zhang F, Zhu Z, Ma W et al (2021) A unified viscoplastic model and strain rate–temperature equivalence of frozen soil under impact loading. J Mech Phys Solids 152:104413MathSciNetCrossRef
13.
go back to reference Ma D, Ma Q, Yao Z et al (2019) Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression. Cold Reg Sci Technol 167:102858CrossRef Ma D, Ma Q, Yao Z et al (2019) Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression. Cold Reg Sci Technol 167:102858CrossRef
14.
go back to reference Ma D, Ma Q, Yuan P (2017) SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state. Cold Reg Sci Technol 136:37–43CrossRef Ma D, Ma Q, Yuan P (2017) SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state. Cold Reg Sci Technol 136:37–43CrossRef
15.
go back to reference Ma Q, Zhang J, Chen W et al (2014) Analysis of SHPB test and impact compression in confining pressure for artificial frozen soil. Rock Soil Mech 35(3):637–640 Ma Q, Zhang J, Chen W et al (2014) Analysis of SHPB test and impact compression in confining pressure for artificial frozen soil. Rock Soil Mech 35(3):637–640
16.
go back to reference Tang W, Zhu Z, Fu T et al (2020) Dynamic experiment and numerical simulation of frozen soil under confining pressure. Acta Mech Sin 36(6):1302–1318CrossRef Tang W, Zhu Z, Fu T et al (2020) Dynamic experiment and numerical simulation of frozen soil under confining pressure. Acta Mech Sin 36(6):1302–1318CrossRef
17.
go back to reference Liu B, Geng S, Li Z et al (2021) Experimental and modeling research on compression–shear behavior of carbon fiber reinforced coral concrete. Constr Build Mater 301:124347CrossRef Liu B, Geng S, Li Z et al (2021) Experimental and modeling research on compression–shear behavior of carbon fiber reinforced coral concrete. Constr Build Mater 301:124347CrossRef
18.
go back to reference Zheng J, Ji M, Zaiemyekeh Z et al (2022) Strain-rate-dependent compressive and compression–shear response of an alumina ceramic. J Eur Ceram Soc 42(16):7516–7527CrossRef Zheng J, Ji M, Zaiemyekeh Z et al (2022) Strain-rate-dependent compressive and compression–shear response of an alumina ceramic. J Eur Ceram Soc 42(16):7516–7527CrossRef
19.
go back to reference Chen L, Mao X, Wu P (2020) Effect of high temperature and inclination angle on mechanical properties and fracture behavior of granite at low strain rate. Sustainability 12(3):1255CrossRef Chen L, Mao X, Wu P (2020) Effect of high temperature and inclination angle on mechanical properties and fracture behavior of granite at low strain rate. Sustainability 12(3):1255CrossRef
20.
go back to reference Chen L, Wu P, Chen Y et al (2020) Experimental study on physical-mechanical properties and fracture behaviors of saturated yellow sandstone considering coupling effect of freeze-thaw and specimen inclination. Sustainability 12(3):1029CrossRef Chen L, Wu P, Chen Y et al (2020) Experimental study on physical-mechanical properties and fracture behaviors of saturated yellow sandstone considering coupling effect of freeze-thaw and specimen inclination. Sustainability 12(3):1029CrossRef
21.
go back to reference Luo B, Ye Y, Hu N et al (2020) Investigation of dip effect on uniaxial compressive strength of inclined rock sample by experimental and theoretical models. Rock Mech Rock Eng 53(12):5659–5675CrossRef Luo B, Ye Y, Hu N et al (2020) Investigation of dip effect on uniaxial compressive strength of inclined rock sample by experimental and theoretical models. Rock Mech Rock Eng 53(12):5659–5675CrossRef
22.
go back to reference Wu P, Chen L, Chen Y et al (2022) Experimental study on mechanical properties and microcrack fracture of coal specimens under the coupling of loading rate and compression–shear loads. Int J Geomech 22(4):04022028CrossRef Wu P, Chen L, Chen Y et al (2022) Experimental study on mechanical properties and microcrack fracture of coal specimens under the coupling of loading rate and compression–shear loads. Int J Geomech 22(4):04022028CrossRef
23.
go back to reference Hong S, Pan J, Tyan T et al (2008) Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads. Int J Plast 24(1):89–117CrossRef Hong S, Pan J, Tyan T et al (2008) Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads. Int J Plast 24(1):89–117CrossRef
24.
go back to reference Zhao P, Lu F, Lin Y et al (2012) Technique for combined dynamic compression–shear testing of PBXs. Exp Mech 52(2):205–213CrossRef Zhao P, Lu F, Lin Y et al (2012) Technique for combined dynamic compression–shear testing of PBXs. Exp Mech 52(2):205–213CrossRef
25.
go back to reference Hou B, Ono A, Abdennadher S et al (2011) Impact behavior of honeycombs under combined shear–compression, Part I: experiments. Int J Solids Struct 48(5):687–697MATHCrossRef Hou B, Ono A, Abdennadher S et al (2011) Impact behavior of honeycombs under combined shear–compression, Part I: experiments. Int J Solids Struct 48(5):687–697MATHCrossRef
26.
go back to reference Hou B, Xiao R, Sun T et al (2019) A new testing method for the dynamic response of soft cellular materials under combined shear–compression. Int J Mech Sci 159:306–314CrossRef Hou B, Xiao R, Sun T et al (2019) A new testing method for the dynamic response of soft cellular materials under combined shear–compression. Int J Mech Sci 159:306–314CrossRef
27.
go back to reference Tounsi R, Markiewicz E, Zouari B et al (2017) Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear–compression loading. Int J Impact Eng 108:348–360CrossRef Tounsi R, Markiewicz E, Zouari B et al (2017) Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear–compression loading. Int J Impact Eng 108:348–360CrossRef
28.
go back to reference Xu S, Huang J, Wang P et al (2015) Investigation of rock material under combined compression and shear dynamic loading: an experimental technique. Int J Impact Eng 86:206–222CrossRef Xu S, Huang J, Wang P et al (2015) Investigation of rock material under combined compression and shear dynamic loading: an experimental technique. Int J Impact Eng 86:206–222CrossRef
29.
go back to reference Zhou L, Xu S, Shan J et al (2018) Heterogeneity in deformation of granite under dynamic combined compression/shear loading. Mech Mater 123:1–18CrossRef Zhou L, Xu S, Shan J et al (2018) Heterogeneity in deformation of granite under dynamic combined compression/shear loading. Mech Mater 123:1–18CrossRef
30.
go back to reference Zhao J, Knauss W, Ravichandran G (2009) A new shear–compression–specimen for determining quasistatic and dynamic polymer properties. Exp Mech 49(3):427–436CrossRef Zhao J, Knauss W, Ravichandran G (2009) A new shear–compression–specimen for determining quasistatic and dynamic polymer properties. Exp Mech 49(3):427–436CrossRef
31.
go back to reference Dorogoy A, Rittel D (2017) Dynamic large strain characterization of tantalum using shear–compression and shear-tension testing. Mech of Mate 112:143–153CrossRef Dorogoy A, Rittel D (2017) Dynamic large strain characterization of tantalum using shear–compression and shear-tension testing. Mech of Mate 112:143–153CrossRef
32.
go back to reference Sang D, Fu R, Wang Y et al (2019) Dynamic microstructure evolution and mechanism of Fe-38Mn alloy during hot shear–compression deformation. Mater Sci Eng A 747(18):130–135CrossRef Sang D, Fu R, Wang Y et al (2019) Dynamic microstructure evolution and mechanism of Fe-38Mn alloy during hot shear–compression deformation. Mater Sci Eng A 747(18):130–135CrossRef
33.
go back to reference Nie X, Chen W, Sun X (2007) Dynamic failure of borosilicate glass under compression/shear loading experiments. J Am Ceram Soc 90(8):2556–2562CrossRef Nie X, Chen W, Sun X (2007) Dynamic failure of borosilicate glass under compression/shear loading experiments. J Am Ceram Soc 90(8):2556–2562CrossRef
34.
go back to reference Xin S, Liu W, Chen W et al (2009) Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading. Int J Impact Eng 36(2):226–234CrossRef Xin S, Liu W, Chen W et al (2009) Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading. Int J Impact Eng 36(2):226–234CrossRef
35.
go back to reference Du H, Dai F, Xu Y et al (2020) Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression–shear impacting. Int J Mech Sci 165(1):105219CrossRef Du H, Dai F, Xu Y et al (2020) Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression–shear impacting. Int J Mech Sci 165(1):105219CrossRef
36.
go back to reference Xu Y, Dai F (2018) Dynamic response and failure mechanism of brittle rocks under combined compression–shear loading experiments. Rock Mech Rock Eng 51:747–764CrossRef Xu Y, Dai F (2018) Dynamic response and failure mechanism of brittle rocks under combined compression–shear loading experiments. Rock Mech Rock Eng 51:747–764CrossRef
37.
go back to reference Xu Y, Dai F, Du H (2020) Experimental and numerical studies on compression–shear behaviors of brittle rocks subjected to combined static-dynamic loading. Int J Mech Sci 175(1):105520CrossRef Xu Y, Dai F, Du H (2020) Experimental and numerical studies on compression–shear behaviors of brittle rocks subjected to combined static-dynamic loading. Int J Mech Sci 175(1):105520CrossRef
38.
go back to reference Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef
39.
go back to reference Frew D, Forrestal M, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef Frew D, Forrestal M, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef
40.
go back to reference Zhu Z, Fu T, Zhou Z et al (2021) Research on Ottosen constitutive model of frozen soil under impact load. Int J Rock Mech Min Sci 137:104544CrossRef Zhu Z, Fu T, Zhou Z et al (2021) Research on Ottosen constitutive model of frozen soil under impact load. Int J Rock Mech Min Sci 137:104544CrossRef
41.
42.
go back to reference Qiao H, Zhu Z, Li B (2022) Dynamic constitutive model for unsaturated frozen soil considering the influence of matrix suction. Meccanica 57(9):2365–2378MathSciNetCrossRef Qiao H, Zhu Z, Li B (2022) Dynamic constitutive model for unsaturated frozen soil considering the influence of matrix suction. Meccanica 57(9):2365–2378MathSciNetCrossRef
43.
go back to reference Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267CrossRef Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267CrossRef
44.
go back to reference Zhang H, Zhu Z, Song S et al (2013) Dynamic behavior of frozen soil under uniaxial strain and stress conditions. Appl Math Mech 34(2):229–238CrossRef Zhang H, Zhu Z, Song S et al (2013) Dynamic behavior of frozen soil under uniaxial strain and stress conditions. Appl Math Mech 34(2):229–238CrossRef
45.
go back to reference Hokka M, Black J, Tkalich D et al (2016) Effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Int J Impact Eng 91:183–193CrossRef Hokka M, Black J, Tkalich D et al (2016) Effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Int J Impact Eng 91:183–193CrossRef
46.
go back to reference Bieniawski Z (1967) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–406CrossRef Bieniawski Z (1967) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–406CrossRef
47.
go back to reference Xu S, Zhou L, Huang J et al (2016) Research on dynamic compression–shear coupling characteristics of rock-like brittle materials. J Vib Shock 35(10):9–17 Xu S, Zhou L, Huang J et al (2016) Research on dynamic compression–shear coupling characteristics of rock-like brittle materials. J Vib Shock 35(10):9–17
48.
go back to reference Drucker D, Prager W (1952) Soil mechanics and plasticity analysis of limit design. Q Appl Math 10:157–162MATHCrossRef Drucker D, Prager W (1952) Soil mechanics and plasticity analysis of limit design. Q Appl Math 10:157–162MATHCrossRef
49.
go back to reference Ning J, He Y, Zhu Z (2014) Dynamic constitutive modeling of frozen soil under impact loading. Chin Sci Bull 59(26):3255–3259CrossRef Ning J, He Y, Zhu Z (2014) Dynamic constitutive modeling of frozen soil under impact loading. Chin Sci Bull 59(26):3255–3259CrossRef
50.
go back to reference Wu X, Li L, Liu W et al (2018) Development of adiabatic shearing bands in 7003–T4 aluminum alloy under high strain rate impacting. Mater Sci Eng A 732:91–98CrossRef Wu X, Li L, Liu W et al (2018) Development of adiabatic shearing bands in 7003–T4 aluminum alloy under high strain rate impacting. Mater Sci Eng A 732:91–98CrossRef
51.
go back to reference Chen Z, Li S, Xia J et al (2017) Calculation of frozen soil thermal parameters considering unfrozen water content. Rock Soil Mech 38(2):67–74 Chen Z, Li S, Xia J et al (2017) Calculation of frozen soil thermal parameters considering unfrozen water content. Rock Soil Mech 38(2):67–74
52.
go back to reference Bagher Shemirani A, Naghdabadi R, Ashrafi M (2016) Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus. Constr Build Mater 125:326–336CrossRef Bagher Shemirani A, Naghdabadi R, Ashrafi M (2016) Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus. Constr Build Mater 125:326–336CrossRef
53.
go back to reference Johnson H (2011) A computational constitutive model for glass subjected to large strains, high strain rates and high pressures. J Appl Mech 78(5):051003CrossRef Johnson H (2011) A computational constitutive model for glass subjected to large strains, high strain rates and high pressures. J Appl Mech 78(5):051003CrossRef
54.
go back to reference Ren L, Yu X, Wang K et al (2021) Numerical research on shock compression performance of UHPC based on HJC model. Chin J Appl Mech 38(5):1910–1918 Ren L, Yu X, Wang K et al (2021) Numerical research on shock compression performance of UHPC based on HJC model. Chin J Appl Mech 38(5):1910–1918
55.
go back to reference Shangguan Z, Zhu Z, Tang W (2020) Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes. J Eng Mech 146(8):04020085CrossRef Shangguan Z, Zhu Z, Tang W (2020) Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes. J Eng Mech 146(8):04020085CrossRef
56.
go back to reference Zhang D, Zhu Z, Liu Z (2016) Dynamic mechanical behavior and numerical simulation of frozen soil under impact loading. Shock Vib 2016(5):3049097 Zhang D, Zhu Z, Liu Z (2016) Dynamic mechanical behavior and numerical simulation of frozen soil under impact loading. Shock Vib 2016(5):3049097
57.
go back to reference Zhang W, Niu Y (2020) Numerical simulations on cutting of frozen soil using HJC Model. Sci Cold Arid Reg 12(3):134–143 Zhang W, Niu Y (2020) Numerical simulations on cutting of frozen soil using HJC Model. Sci Cold Arid Reg 12(3):134–143
58.
go back to reference Zhu T, Ding H, Wang C et al (2023) Parameters calibration of the GISSMO failure model for SUS301L-MT. Chin J Mech Eng 36(1):1–12CrossRef Zhu T, Ding H, Wang C et al (2023) Parameters calibration of the GISSMO failure model for SUS301L-MT. Chin J Mech Eng 36(1):1–12CrossRef
59.
go back to reference Luo Y, Wang G, Li X et al (2020) Analysis of energy dissipation and crack evolution law of sandstone under impact load. Int J Rock Mech Min Sci 132(3):104359CrossRef Luo Y, Wang G, Li X et al (2020) Analysis of energy dissipation and crack evolution law of sandstone under impact load. Int J Rock Mech Min Sci 132(3):104359CrossRef
60.
go back to reference Carpinteri A, Scavia C (1993) Energy dissipation due to frictional shake-down on a closed crack subjected to shear. Meccanica 28(4):347–352MATHCrossRef Carpinteri A, Scavia C (1993) Energy dissipation due to frictional shake-down on a closed crack subjected to shear. Meccanica 28(4):347–352MATHCrossRef
61.
go back to reference Ma Q, Ma D, Yuan P et al (2018) Energy absorption characteristics of frozen soil based on SHPB test. Adv Mater Sci Eng 1:1–9 Ma Q, Ma D, Yuan P et al (2018) Energy absorption characteristics of frozen soil based on SHPB test. Adv Mater Sci Eng 1:1–9
Metadata
Title
Dynamic failure behavior and characteristics of frozen soil under coupled compression–shear loading
Authors
Yanwei Wang
Zhiwu Zhu
Tao Li
Publication date
19-05-2023
Publisher
Springer Netherlands
Published in
Meccanica / Issue 7/2023
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-023-01669-y

Other articles of this Issue 7/2023

Meccanica 7/2023 Go to the issue

Premium Partners