Skip to main content
Top
Published in: Neural Computing and Applications 7/2019

04-11-2017 | Original Article

EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction

Authors: Hossein Komijani, Mohammad Reza Parsaei, Ebrahim Khajeh, Mohammad Javad Golkar, Houman Zarrabi

Published in: Neural Computing and Applications | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Brain–computer interface (BCI) is a system that provides a way for brain and computer to communicate with each other directly. Electroencephalogram (EEG) is an important process in a BCI that can be used to determine whether the subject is doing action and/or imagination. This paper presents a motor imagery (MI) classification for BCI systems using recurrent adaptive neuro-fuzzy interface system (ANFIS). The classification system is based on time-series prediction where features are exploited from the EEG signals recorded from subjects imagining of the right hand, left hand, tongue, and foot movement. The classification system contains some recurrent ANFISes. Each recurrent ANFIS is trained on MI signals of one class and specializes in recognizing the signals of the same class from the signals of other categories. Recurrent ANFISes are employed to predict one step ahead for the EEG time-series data, and then, the classification is performed by mean square error (MSE) of the predicted signals. This approach is carried out on twelve subjects MI signals of four classes in online mode. Average prediction MSE of 0.0302 and average classification accuracy of 85.52% are obtained as results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buccino AP, Keles HO, Omurtag A (2016) Hybrid EEG-fNIRS asynchronous brain–computer interface for multiple motor tasks. PLoS ONE 11(1):e0146610CrossRef Buccino AP, Keles HO, Omurtag A (2016) Hybrid EEG-fNIRS asynchronous brain–computer interface for multiple motor tasks. PLoS ONE 11(1):e0146610CrossRef
2.
go back to reference Wasserman D, Aas S (2016) BCIs and disability: enhancement, environmental modification, and embodiment. Brain Comput Interfaces 3(3):126–132CrossRef Wasserman D, Aas S (2016) BCIs and disability: enhancement, environmental modification, and embodiment. Brain Comput Interfaces 3(3):126–132CrossRef
3.
go back to reference Cano-Izquierdo JM, Ibarrola J, Almonacid M (2012) Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt. IEEE Trans Neural Syst Rehabil Eng 20(1):2–7CrossRef Cano-Izquierdo JM, Ibarrola J, Almonacid M (2012) Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt. IEEE Trans Neural Syst Rehabil Eng 20(1):2–7CrossRef
4.
go back to reference Li M, Chen W, Zhang T (2017) Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 31:357–365CrossRef Li M, Chen W, Zhang T (2017) Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 31:357–365CrossRef
5.
go back to reference Lotte F, Lécuyer A, Arnaldi B (2009) FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain–computer interfaces. IEEE Trans Signal Process 57(8):3253–3263MathSciNetCrossRefMATH Lotte F, Lécuyer A, Arnaldi B (2009) FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain–computer interfaces. IEEE Trans Signal Process 57(8):3253–3263MathSciNetCrossRefMATH
6.
go back to reference Choubisa M, Trivedi P (2015) Analysing EEG signals for detection of mind awake stage and sleep deprivation stage. In: 2015 International conference on green computing and internet of things (ICGCIoT), IEEE, pp 1209–1211 Choubisa M, Trivedi P (2015) Analysing EEG signals for detection of mind awake stage and sleep deprivation stage. In: 2015 International conference on green computing and internet of things (ICGCIoT), IEEE, pp 1209–1211
7.
go back to reference Komijani H, Nabaei A, Zarrabi H (2016) Classification of normal and epileptic EEG signals using adaptive neuro-fuzzy network based on time series prediction. Neurosci Biomed Eng J 4(4):273–277CrossRef Komijani H, Nabaei A, Zarrabi H (2016) Classification of normal and epileptic EEG signals using adaptive neuro-fuzzy network based on time series prediction. Neurosci Biomed Eng J 4(4):273–277CrossRef
8.
go back to reference Abu-Alqumsan M, Ebert F, Peer A (2017) Goal-recognition-based adaptive brain–computer interface for navigating immersive robotic systems. J Neural Eng 14:036024CrossRef Abu-Alqumsan M, Ebert F, Peer A (2017) Goal-recognition-based adaptive brain–computer interface for navigating immersive robotic systems. J Neural Eng 14:036024CrossRef
9.
go back to reference Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef
10.
go back to reference Luu TP, He Y, Brown S, Nakagame S, Contreras-Vidal JL (2016) Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar. J Neural Eng 13(3):036006CrossRef Luu TP, He Y, Brown S, Nakagame S, Contreras-Vidal JL (2016) Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar. J Neural Eng 13(3):036006CrossRef
11.
go back to reference Saa JFD, Çetin M (2013) Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data. IEEE Trans Neural Syst Rehabil Eng 21(5):716–724CrossRef Saa JFD, Çetin M (2013) Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data. IEEE Trans Neural Syst Rehabil Eng 21(5):716–724CrossRef
12.
go back to reference Coyle D, Prasad G, McGinnity TM (2009) Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain–computer interface. IEEE Trans Syst Man Cybern B Cybern 39(6):1458–1471CrossRef Coyle D, Prasad G, McGinnity TM (2009) Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain–computer interface. IEEE Trans Syst Man Cybern B Cybern 39(6):1458–1471CrossRef
13.
go back to reference Mohammadi MR, Khaleghi A, Nasrabadi AM, Rafieivand S, Begol M, Zarafshan H (2016) EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 6(2):66–73CrossRef Mohammadi MR, Khaleghi A, Nasrabadi AM, Rafieivand S, Begol M, Zarafshan H (2016) EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 6(2):66–73CrossRef
14.
go back to reference Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Nguyen HT (2016) Selecting optimal EEG channels for mental tasks classification: an approach using ICA. In: 2016 IEEE congress on evolutionary computation (CEC), Vancouver, BC, pp 1331–1335 Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Nguyen HT (2016) Selecting optimal EEG channels for mental tasks classification: an approach using ICA. In: 2016 IEEE congress on evolutionary computation (CEC), Vancouver, BC, pp 1331–1335
15.
go back to reference Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Craig A, Nguyen HT (2017) Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J Biomed Health Inform 21(3):715–724CrossRef Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Craig A, Nguyen HT (2017) Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J Biomed Health Inform 21(3):715–724CrossRef
16.
go back to reference Chai R et al (2016) Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC), IEEE Chai R et al (2016) Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC), IEEE
17.
go back to reference Chai R et al (2015) Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, pp 514–517 Chai R et al (2015) Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, pp 514–517
18.
go back to reference La Rocca D, Campisi P, Scarano G (2012) EEG biometrics for individual recognition in resting state with closed eyes. In: 2012 BIOSIG-Proceedings of the international conference of the biometrics special interest group (BIOSIG), IEEE La Rocca D, Campisi P, Scarano G (2012) EEG biometrics for individual recognition in resting state with closed eyes. In: 2012 BIOSIG-Proceedings of the international conference of the biometrics special interest group (BIOSIG), IEEE
19.
go back to reference Kumari P, Kumar S, Vaish A (2014) Feature extraction using empirical mode decomposition for biometric system. In: 2014 international conference on signal propagation and computer technology (ICSPCT), IEEE Kumari P, Kumar S, Vaish A (2014) Feature extraction using empirical mode decomposition for biometric system. In: 2014 international conference on signal propagation and computer technology (ICSPCT), IEEE
20.
go back to reference Das R, et al (2015) EEG biometrics for user recognition using visually evoked potentials. In: 2015 International conference of the biometrics special interest group (BIOSIG), IEEE Das R, et al (2015) EEG biometrics for user recognition using visually evoked potentials. In: 2015 International conference of the biometrics special interest group (BIOSIG), IEEE
21.
go back to reference Vatankhah M, Yaghubi M (2009). Adaptive neuro-fuzzy inference system for classification of eeg signals using fractal dimension. In: 2009. EMS’09. Third UKSim European symposium on computer modeling and simulation, IEEE pp 214–218 Vatankhah M, Yaghubi M (2009). Adaptive neuro-fuzzy inference system for classification of eeg signals using fractal dimension. In: 2009. EMS’09. Third UKSim European symposium on computer modeling and simulation, IEEE pp 214–218
22.
go back to reference Yu W, Feng H, Feng Y, Madani K, Sabourin C (2015) Nonholonomic mobile system control by combining EEG-based BCI with ANFIS. Bio Med Mater Eng 26(s1):S1125–S1133CrossRef Yu W, Feng H, Feng Y, Madani K, Sabourin C (2015) Nonholonomic mobile system control by combining EEG-based BCI with ANFIS. Bio Med Mater Eng 26(s1):S1125–S1133CrossRef
23.
go back to reference Begum D, Ravikumar KM, Mathew J, Kubakaddi S, Yadav R (2015) EEG based patient monitoring system for mental alertness using adaptive neuro-fuzzy approach. J Med Bioeng 4(1):59–66 Begum D, Ravikumar KM, Mathew J, Kubakaddi S, Yadav R (2015) EEG based patient monitoring system for mental alertness using adaptive neuro-fuzzy approach. J Med Bioeng 4(1):59–66
24.
go back to reference Homri I, Yacoub S, Ellouze N (2015) Combined approaches of features selection for EEG classification. Int Rev Comput Softw IRECOS 10(3):256–264CrossRef Homri I, Yacoub S, Ellouze N (2015) Combined approaches of features selection for EEG classification. Int Rev Comput Softw IRECOS 10(3):256–264CrossRef
25.
go back to reference Hekim M (2016) The classification of EEG signals using discretization-based entropy and the adaptive neuro-fuzzy inference system. Turk J Electr Eng Comput Sci 24(1):285–297CrossRef Hekim M (2016) The classification of EEG signals using discretization-based entropy and the adaptive neuro-fuzzy inference system. Turk J Electr Eng Comput Sci 24(1):285–297CrossRef
26.
go back to reference Adedayo OO, Oladipo F, Ijeh-Ogboi C (2015) Softcomputing techniques for improved electroencephalogram signal analysis. Int J Curr Eng Technol 5(3):2181–2186 Adedayo OO, Oladipo F, Ijeh-Ogboi C (2015) Softcomputing techniques for improved electroencephalogram signal analysis. Int J Curr Eng Technol 5(3):2181–2186
27.
go back to reference Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159CrossRef Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159CrossRef
30.
go back to reference Schlögl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):L14CrossRef Schlögl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):L14CrossRef
31.
go back to reference Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134CrossRef Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134CrossRef
32.
go back to reference Bhardwaj S et al (2015) Online and automated reliable system design to remove blink and muscle artefact in EEG. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, pp 6784–6787 Bhardwaj S et al (2015) Online and automated reliable system design to remove blink and muscle artefact in EEG. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, pp 6784–6787
33.
go back to reference Kwon Y et al (2015) Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes. IEEE Trans Pattern Anal Mach Intell 37(9):1792–1805CrossRef Kwon Y et al (2015) Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes. IEEE Trans Pattern Anal Mach Intell 37(9):1792–1805CrossRef
34.
go back to reference Jadhav PN et al (2014) Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL, pp 1881–1884 Jadhav PN et al (2014) Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL, pp 1881–1884
35.
go back to reference Jahani Fariman H, Ahmad SA, Hamiruce Marhaban M, Ali Jan Ghasab M, Chappell PH (2015) Simple and computationally efficient movement classification approach for EMG-controlled prosthetic hand: ANFIS vs. artificial neural network. Intell Autom Soft Comput 21(4):559–573CrossRef Jahani Fariman H, Ahmad SA, Hamiruce Marhaban M, Ali Jan Ghasab M, Chappell PH (2015) Simple and computationally efficient movement classification approach for EMG-controlled prosthetic hand: ANFIS vs. artificial neural network. Intell Autom Soft Comput 21(4):559–573CrossRef
36.
go back to reference Dash R, Dash P (2016) Efficient stock price prediction using a self evolving recurrent neuro-fuzzy inference system optimized through a modified technique. Expert Syst Appl 52:75–90CrossRef Dash R, Dash P (2016) Efficient stock price prediction using a self evolving recurrent neuro-fuzzy inference system optimized through a modified technique. Expert Syst Appl 52:75–90CrossRef
37.
go back to reference Lin YY, Chang JY, Lin CT (2013) Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 24(2):310–321CrossRef Lin YY, Chang JY, Lin CT (2013) Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 24(2):310–321CrossRef
38.
go back to reference Frolov AA, Husek D, Polyakov PY (2009) Recurrent-neural-network-based Boolean factor analysis and its application to word clustering. IEEE Trans Neural Netw 20(7):1073–1086CrossRef Frolov AA, Husek D, Polyakov PY (2009) Recurrent-neural-network-based Boolean factor analysis and its application to word clustering. IEEE Trans Neural Netw 20(7):1073–1086CrossRef
39.
go back to reference Coyle D, Prasad G, McGinnity TM (2005) A time-series prediction approach for feature extraction in a brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 13(4):461–467CrossRefMATH Coyle D, Prasad G, McGinnity TM (2005) A time-series prediction approach for feature extraction in a brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 13(4):461–467CrossRefMATH
40.
go back to reference Coyle D (2009) Neural network based auto association and time-series prediction for biosignal processing in brain–computer interfaces. IEEE Comput Intell Mag 4:47–59CrossRef Coyle D (2009) Neural network based auto association and time-series prediction for biosignal processing in brain–computer interfaces. IEEE Comput Intell Mag 4:47–59CrossRef
41.
go back to reference Shiman F, Safavi SH, Vaneghi FM, Oladazimi M, Safari MJ, Ibrahim F (2012) EEG feature extraction using parametric and non-parametric models. In: Proceedings of 2012 IEEE-EMBS international conference on biomedical and health informatics Shiman F, Safavi SH, Vaneghi FM, Oladazimi M, Safari MJ, Ibrahim F (2012) EEG feature extraction using parametric and non-parametric models. In: Proceedings of 2012 IEEE-EMBS international conference on biomedical and health informatics
42.
go back to reference Zhao Y, Billings SA, Wei HL, Sarrigiannis PG (2013) A parametric method to measure time-varying linear and nonlinear causality with applications to EEG data. IEEE Trans Biomed Eng 60(11):3141–3148CrossRef Zhao Y, Billings SA, Wei HL, Sarrigiannis PG (2013) A parametric method to measure time-varying linear and nonlinear causality with applications to EEG data. IEEE Trans Biomed Eng 60(11):3141–3148CrossRef
Metadata
Title
EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction
Authors
Hossein Komijani
Mohammad Reza Parsaei
Ebrahim Khajeh
Mohammad Javad Golkar
Houman Zarrabi
Publication date
04-11-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3213-3

Other articles of this Issue 7/2019

Neural Computing and Applications 7/2019 Go to the issue

Premium Partner