Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.11.2017 | Original Article | Ausgabe 7/2019

Neural Computing and Applications 7/2019

EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction

Zeitschrift:
Neural Computing and Applications > Ausgabe 7/2019
Autoren:
Hossein Komijani, Mohammad Reza Parsaei, Ebrahim Khajeh, Mohammad Javad Golkar, Houman Zarrabi

Abstract

Brain–computer interface (BCI) is a system that provides a way for brain and computer to communicate with each other directly. Electroencephalogram (EEG) is an important process in a BCI that can be used to determine whether the subject is doing action and/or imagination. This paper presents a motor imagery (MI) classification for BCI systems using recurrent adaptive neuro-fuzzy interface system (ANFIS). The classification system is based on time-series prediction where features are exploited from the EEG signals recorded from subjects imagining of the right hand, left hand, tongue, and foot movement. The classification system contains some recurrent ANFISes. Each recurrent ANFIS is trained on MI signals of one class and specializes in recognizing the signals of the same class from the signals of other categories. Recurrent ANFISes are employed to predict one step ahead for the EEG time-series data, and then, the classification is performed by mean square error (MSE) of the predicted signals. This approach is carried out on twelve subjects MI signals of four classes in online mode. Average prediction MSE of 0.0302 and average classification accuracy of 85.52% are obtained as results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2019

Neural Computing and Applications 7/2019 Zur Ausgabe

Premium Partner

    Bildnachweise