Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2022

17-01-2022 | Technical Article

Effect of Bi and Zn Additions on the Microstructures and Mechanical Properties of As-Cast Mg–7Sn–2Al-Based Alloys

Authors: Rui Feng, Xin Li, Xuefei Huang, Weigang Huang

Published in: Journal of Materials Engineering and Performance | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure and mechanical properties of as-cast Mg-7Sn-2Al-based alloys containing Bi and Zn were investigated to improve the microstructure and the strength of the alloys. The results revealed that the addition of Bi and Zn can refine the dendritic microstructure and the grain size, especially for the alloy with co-addition of Bi and Zn. The average grain size of Mg-7Sn-2Al, Mg-7Sn-2Al-2Bi and Mg-7Sn-2Al-2Bi-2Zn is 51.9, 43.5 and 28.1 μm, respectively. Besides the Mg2Sn phase, additions of Bi and Zn to Mg-7Sn-2Al lead to the formation of Mg3Bi2 phase and promote the formation of Mg2Sn phases. Owing to the refinement of microstructure, the strength of as-cast alloys containing Bi and Zn is enhanced significantly, whereas the ductility has no obvious loss. The ultimate tensile strength and ultimate compressive strength of Mg-7Sn-2Al-2Bi-2Zn alloy are enhanced to be 198 and 404 MPa, which is increased by 53.5 and 35.6%, respectively, compared to that of the Mg-7Sn-2Al alloys. The final tensile elongation of the investigated alloys decreases slightly from 9.7% of Mg-7Sn-2Al alloy to 8.7% of Mg-7Sn-2Al-2Bi-2Zn alloy with the increase of the strength. However, the compressive elongation exhibits increase slightly from 18.6% to about 20%. The results indicate that the co-addition of Bi and Zn is beneficial to improve the microstructure and mechanical properties of alloys. The strengthening mechanism of the present alloys was discussed in this manuscript.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.K. Alaneme and E.A. Okotete, Enhancing Plastic Deformability of Mg and Its Alloys—A Review of Traditional and Nascent Developments, J. Magnes. Alloys, 2017, 5(4), p 460–475.CrossRef K.K. Alaneme and E.A. Okotete, Enhancing Plastic Deformability of Mg and Its Alloys—A Review of Traditional and Nascent Developments, J. Magnes. Alloys, 2017, 5(4), p 460–475.CrossRef
2.
go back to reference J.-S. Leu, C.-T. Chiang, S. Lee, Y.-H. Chen and C.-L. Chu, Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys, J. Mater. Eng. Perform., 2010, 19(9), p 1235–1239.CrossRef J.-S. Leu, C.-T. Chiang, S. Lee, Y.-H. Chen and C.-L. Chu, Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys, J. Mater. Eng. Perform., 2010, 19(9), p 1235–1239.CrossRef
3.
go back to reference H. Somekawa and A. Singh, Superior Room Temperature Ductility of Magnesium Dilute Binary Alloy via Grain Boundary Sliding, Scr. Mater., 2018, 150, p 26–30.CrossRef H. Somekawa and A. Singh, Superior Room Temperature Ductility of Magnesium Dilute Binary Alloy via Grain Boundary Sliding, Scr. Mater., 2018, 150, p 26–30.CrossRef
4.
go back to reference H. Yan, R.S. Chen and E.H. Han, Room-Temperature Ductility and Anisotropy of Two Rolled Mg–Zn–Gd Alloys, Mater. Sci. Eng. A, 2010, 527(15), p 3317–3322.CrossRef H. Yan, R.S. Chen and E.H. Han, Room-Temperature Ductility and Anisotropy of Two Rolled Mg–Zn–Gd Alloys, Mater. Sci. Eng. A, 2010, 527(15), p 3317–3322.CrossRef
5.
go back to reference H.K. Lim, D.H. Kim, J.Y. Lee, W.T. Kim and D.H. Kim, Effects of Alloying Elements on Microstructures and Mechanical Properties of Wrought Mg–MM–Sn Alloy, J. Alloys Compd., 2009, 468(1–2), p 308–314.CrossRef H.K. Lim, D.H. Kim, J.Y. Lee, W.T. Kim and D.H. Kim, Effects of Alloying Elements on Microstructures and Mechanical Properties of Wrought Mg–MM–Sn Alloy, J. Alloys Compd., 2009, 468(1–2), p 308–314.CrossRef
6.
go back to reference X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, Improvement of Formability of Mg–Al–Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling, J. Alloys Compd., 2009, 470(1–2), p 263–268.CrossRef X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, Improvement of Formability of Mg–Al–Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling, J. Alloys Compd., 2009, 470(1–2), p 263–268.CrossRef
7.
go back to reference S. Remennik, I. Bartsch, E. Willbold, F. Witte and D. Shechtman, New, Fast Corroding High Ductility Mg–Bi–Ca and Mg–Bi–Si Alloys, with No Clinically Observable Gas Formation in Bone Implants, Mater. Sci. Eng. B, 2011, 176(20), p 1653–1659.CrossRef S. Remennik, I. Bartsch, E. Willbold, F. Witte and D. Shechtman, New, Fast Corroding High Ductility Mg–Bi–Ca and Mg–Bi–Si Alloys, with No Clinically Observable Gas Formation in Bone Implants, Mater. Sci. Eng. B, 2011, 176(20), p 1653–1659.CrossRef
8.
go back to reference H. Watanabe, T. Mukai and K. Ishikawa, Effect of Temperature of Differential Speed Rolling on Room Temperature Mechanical Properties and Texture in an AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2007, 182(1–3), p 644–647.CrossRef H. Watanabe, T. Mukai and K. Ishikawa, Effect of Temperature of Differential Speed Rolling on Room Temperature Mechanical Properties and Texture in an AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2007, 182(1–3), p 644–647.CrossRef
9.
go back to reference T.T. Sasaki, K. Oh-ishi, T. Ohkubo and K. Hono, Enhanced Age Hardening Response by the Addition of Zn in Mg–Sn Alloys, Scr. Mater., 2006, 55(3), p 251–254.CrossRef T.T. Sasaki, K. Oh-ishi, T. Ohkubo and K. Hono, Enhanced Age Hardening Response by the Addition of Zn in Mg–Sn Alloys, Scr. Mater., 2006, 55(3), p 251–254.CrossRef
10.
go back to reference Y. Chai, B. Jiang, J. Song, Q. Wang, H. Gao, B. Liu, G. Huang, D. Zhang and F. Pan, Improvement of Mechanical Properties and Reduction of Yield Asymmetry of Extruded Mg-Sn-Zn Alloy Through Ca Addition, J. Alloys Compd., 2019, 782, p 1076–1086.CrossRef Y. Chai, B. Jiang, J. Song, Q. Wang, H. Gao, B. Liu, G. Huang, D. Zhang and F. Pan, Improvement of Mechanical Properties and Reduction of Yield Asymmetry of Extruded Mg-Sn-Zn Alloy Through Ca Addition, J. Alloys Compd., 2019, 782, p 1076–1086.CrossRef
11.
go back to reference S. Wei, Y. Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang and Y. Zhao, Compressive Creep Behavior of As-Cast and Aging-Treated Mg–5wt% Sn Alloys, Mater. Sci. Eng. A, 2008, 492(1–2), p 20–23.CrossRef S. Wei, Y. Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang and Y. Zhao, Compressive Creep Behavior of As-Cast and Aging-Treated Mg–5wt% Sn Alloys, Mater. Sci. Eng. A, 2008, 492(1–2), p 20–23.CrossRef
12.
go back to reference P. Poddar, K.L. Sahoo, S. Mukherjee and A.K. Ray, Creep Behaviour of Mg–8% Sn and Mg–8% Sn–3% Al–1% Si Alloys, Mater. Sci. Eng. A, 2012, 545, p 103–110.CrossRef P. Poddar, K.L. Sahoo, S. Mukherjee and A.K. Ray, Creep Behaviour of Mg–8% Sn and Mg–8% Sn–3% Al–1% Si Alloys, Mater. Sci. Eng. A, 2012, 545, p 103–110.CrossRef
13.
go back to reference H. Liu, Y. Chen, Y. Tang, S. Wei and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of as-Cast Mg–(1–10)%Sn Alloys, J. Alloys Compd., 2007, 440(1–2), p 122–126.CrossRef H. Liu, Y. Chen, Y. Tang, S. Wei and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of as-Cast Mg–(1–10)%Sn Alloys, J. Alloys Compd., 2007, 440(1–2), p 122–126.CrossRef
14.
go back to reference C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Preparation and Characterization of as-Extruded Mg–Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67.CrossRef C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song and A. Tang, Preparation and Characterization of as-Extruded Mg–Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67.CrossRef
15.
go back to reference H.-Y. Ha, J.-Y. Kang, J. Yang, C.D. Yim and B.S. You, Role of Sn in Corrosion and Passive Behavior of Extruded Mg-5 wt%Sn Alloy, Corros. Sci., 2016, 102, p 355–362.CrossRef H.-Y. Ha, J.-Y. Kang, J. Yang, C.D. Yim and B.S. You, Role of Sn in Corrosion and Passive Behavior of Extruded Mg-5 wt%Sn Alloy, Corros. Sci., 2016, 102, p 355–362.CrossRef
16.
go back to reference R. Radha and D. Sreekanth, Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – A Review, J. Magnes. Alloys, 2017, 5(3), p 286–312.CrossRef R. Radha and D. Sreekanth, Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – A Review, J. Magnes. Alloys, 2017, 5(3), p 286–312.CrossRef
17.
go back to reference X. Wang, Y. Zhang, E. Guo, Z. Chen, H. Kang, X. Liu, P. Han and T. Wang, In Vitro Investigation on Microstructure, Bio-Corrosion Properties and Cytotoxicity of as-Extruded Mg–5Sn–xIn Alloys, J. Alloys Compd., 2021, 877, p 160294.CrossRef X. Wang, Y. Zhang, E. Guo, Z. Chen, H. Kang, X. Liu, P. Han and T. Wang, In Vitro Investigation on Microstructure, Bio-Corrosion Properties and Cytotoxicity of as-Extruded Mg–5Sn–xIn Alloys, J. Alloys Compd., 2021, 877, p 160294.CrossRef
18.
go back to reference Y.A. Chen, L. Jin, Y. Song, H. Liu and R. Ye, Effect of Zn on Microstructure and Mechanical Property of Mg–3Sn–1Al Alloys, Mater. Sci. Eng. A, 2014, 612, p 96–101.CrossRef Y.A. Chen, L. Jin, Y. Song, H. Liu and R. Ye, Effect of Zn on Microstructure and Mechanical Property of Mg–3Sn–1Al Alloys, Mater. Sci. Eng. A, 2014, 612, p 96–101.CrossRef
19.
go back to reference T.T. Sasaki, K. Oh-ishi, T. Ohkubo and K. Hono, Effect of Double Aging and Microalloying on the Age Hardening Behavior of a Mg–Sn–Zn Alloy, Mater. Sci. Eng. A, 2011, 530, p 1–8.CrossRef T.T. Sasaki, K. Oh-ishi, T. Ohkubo and K. Hono, Effect of Double Aging and Microalloying on the Age Hardening Behavior of a Mg–Sn–Zn Alloy, Mater. Sci. Eng. A, 2011, 530, p 1–8.CrossRef
20.
go back to reference W.N. Tang, S.S. Park and B.S. You, Effect of the Zn Content on the Microstructure and Mechanical Properties of Indirect-Extruded Mg–5Sn–xZn Alloys, Mater. Des., 2011, 32(6), p 3537–3543.CrossRef W.N. Tang, S.S. Park and B.S. You, Effect of the Zn Content on the Microstructure and Mechanical Properties of Indirect-Extruded Mg–5Sn–xZn Alloys, Mater. Des., 2011, 32(6), p 3537–3543.CrossRef
21.
go back to reference Y. Zhang, L. Song, X. Chen, Y. Lu and X. Li, Effect of Zn and Ca Addition on Microstructure and Strength at Room Temperature of As-Cast and As-Extruded Mg-Sn Alloys, Materials, 2018, 11(9), p 1490–1503.CrossRef Y. Zhang, L. Song, X. Chen, Y. Lu and X. Li, Effect of Zn and Ca Addition on Microstructure and Strength at Room Temperature of As-Cast and As-Extruded Mg-Sn Alloys, Materials, 2018, 11(9), p 1490–1503.CrossRef
22.
go back to reference H. Pan, G. Qin, M. Xu, H. Fu, Y. Ren, F. Pan, Z. Gao, C. Zhao, Q. Yang, J. She and B. Song, Enhancing Mechanical Properties of Mg–Sn Alloys by Combining Addition of Ca and Zn, Mater. Des., 2015, 83, p 736–744.CrossRef H. Pan, G. Qin, M. Xu, H. Fu, Y. Ren, F. Pan, Z. Gao, C. Zhao, Q. Yang, J. She and B. Song, Enhancing Mechanical Properties of Mg–Sn Alloys by Combining Addition of Ca and Zn, Mater. Des., 2015, 83, p 736–744.CrossRef
23.
go back to reference G. Nayyeri and R. Mahmudi, Effects of Ca Additions on the Microstructural Stability and Mechanical Properties of Mg–5%Sn Alloy, Mater. Des., 2011, 32(3), p 1571–1576.CrossRef G. Nayyeri and R. Mahmudi, Effects of Ca Additions on the Microstructural Stability and Mechanical Properties of Mg–5%Sn Alloy, Mater. Des., 2011, 32(3), p 1571–1576.CrossRef
24.
go back to reference G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behavior of Cast, Mg–5Sn–xCa Alloys, Mater. Sci. Eng. A, 2010, 527(7–8), p 2087–2098.CrossRef G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behavior of Cast, Mg–5Sn–xCa Alloys, Mater. Sci. Eng. A, 2010, 527(7–8), p 2087–2098.CrossRef
25.
go back to reference F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo and K. Hono, Compositional Optimization of Mg–Sn–Al Alloys for Higher age Hardening Response, Mater. Sci. Eng. A, 2013, 566, p 22–29.CrossRef F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo and K. Hono, Compositional Optimization of Mg–Sn–Al Alloys for Higher age Hardening Response, Mater. Sci. Eng. A, 2013, 566, p 22–29.CrossRef
26.
go back to reference Y.K. Kim, S.W. Sohn, D.H. Kim, W.T. Kim and D.H. Kim, Role of Icosahedral Phase in Enhancing the Strength of Mg–Sn–Zn–Al Alloy, J. Alloys Compd., 2013, 549, p 46–50.CrossRef Y.K. Kim, S.W. Sohn, D.H. Kim, W.T. Kim and D.H. Kim, Role of Icosahedral Phase in Enhancing the Strength of Mg–Sn–Zn–Al Alloy, J. Alloys Compd., 2013, 549, p 46–50.CrossRef
27.
go back to reference S.-H. Kim, J.U. Lee, Y.J. Kim, J.-G. Jung and S.H. Park, Controlling the Microstructure and Improving the Tensile Properties of Extruded Mg-Sn-Zn Alloy Through Al Addition, J. Alloys Compd., 2018, 751, p 1–11.CrossRef S.-H. Kim, J.U. Lee, Y.J. Kim, J.-G. Jung and S.H. Park, Controlling the Microstructure and Improving the Tensile Properties of Extruded Mg-Sn-Zn Alloy Through Al Addition, J. Alloys Compd., 2018, 751, p 1–11.CrossRef
28.
go back to reference X. Huang, A. Wu, Q. Li and W. Huang, Effects of Extrusion and Ag, Zn Addition on the Age-Hardening Response and Microstructure of a Mg-7Sn Alloy, Mater. Sci. Eng. A, 2016, 661, p 233–239.CrossRef X. Huang, A. Wu, Q. Li and W. Huang, Effects of Extrusion and Ag, Zn Addition on the Age-Hardening Response and Microstructure of a Mg-7Sn Alloy, Mater. Sci. Eng. A, 2016, 661, p 233–239.CrossRef
29.
go back to reference X.Y. Qian, Y. Zeng, B. Jiang, Q.R. Yang, Y.J. Wan, G.F. Quan and F.S. Pan, Grain Refinement Mechanism and Improved Mechanical Properties in Mg–Sn Alloy with Trace Y Addition, J. Alloys Compd., 2020, 820, p 153122.CrossRef X.Y. Qian, Y. Zeng, B. Jiang, Q.R. Yang, Y.J. Wan, G.F. Quan and F.S. Pan, Grain Refinement Mechanism and Improved Mechanical Properties in Mg–Sn Alloy with Trace Y Addition, J. Alloys Compd., 2020, 820, p 153122.CrossRef
30.
go back to reference H. Liu, Y. Chen, H. Zhao, S. Wei and W. Gao, Effects of Strontium on Microstructure and Mechanical Properties of as-Cast Mg–5wt.%Sn Alloy, J. Alloys Compd., 2010, 504(2), p 345–350.CrossRef H. Liu, Y. Chen, H. Zhao, S. Wei and W. Gao, Effects of Strontium on Microstructure and Mechanical Properties of as-Cast Mg–5wt.%Sn Alloy, J. Alloys Compd., 2010, 504(2), p 345–350.CrossRef
31.
go back to reference W. Li, X. Huang and W. Huang, Effects of Ca, Ag Addition on the Microstructure and Age-Hardening Behavior of a Mg-7Sn (wt%) Alloy, Mater. Sci. Eng. A, 2017, 692, p 75–80.CrossRef W. Li, X. Huang and W. Huang, Effects of Ca, Ag Addition on the Microstructure and Age-Hardening Behavior of a Mg-7Sn (wt%) Alloy, Mater. Sci. Eng. A, 2017, 692, p 75–80.CrossRef
32.
go back to reference E. Karakulak and Y.B. Küçüker, Effect of Si Addition on Microstructure and Wear Properties of Mg-Sn as-Cast Alloys, J. Magnes. Alloys, 2018, 6(4), p 384–389.CrossRef E. Karakulak and Y.B. Küçüker, Effect of Si Addition on Microstructure and Wear Properties of Mg-Sn as-Cast Alloys, J. Magnes. Alloys, 2018, 6(4), p 384–389.CrossRef
33.
go back to reference S.H. Huang, Microstructure and Mechanical Properties of a Ag Micro-Alloyed Mg-5Sn Alloy, J. Mater. Eng. Perform., 2018, 27(7), p 3199–3205.CrossRef S.H. Huang, Microstructure and Mechanical Properties of a Ag Micro-Alloyed Mg-5Sn Alloy, J. Mater. Eng. Perform., 2018, 27(7), p 3199–3205.CrossRef
34.
go back to reference P.-Y. Wang, B.-Y. Wang, C. Wang, J.-G. Wang, C.-Y. Ma, J.-S. Li, M. Zha and H.-Y. Wang, Design of Multicomponent Mg–Al–Zn–Sn–Bi Alloys with Refined Microstructure and Enhanced Tensile Properties, Mater. Sci. Eng. A, 2020, 791, p 139696.CrossRef P.-Y. Wang, B.-Y. Wang, C. Wang, J.-G. Wang, C.-Y. Ma, J.-S. Li, M. Zha and H.-Y. Wang, Design of Multicomponent Mg–Al–Zn–Sn–Bi Alloys with Refined Microstructure and Enhanced Tensile Properties, Mater. Sci. Eng. A, 2020, 791, p 139696.CrossRef
35.
go back to reference J. Go, J.U. Lee, H. Yu and S.H. Park, Influence of Bi Addition on Dynamic Recrystallization and Precipitation Behaviors During Hot Extrusion of Pure Mg, J. Mater. Sci. Technol., 2020, 44, p 62–75.CrossRef J. Go, J.U. Lee, H. Yu and S.H. Park, Influence of Bi Addition on Dynamic Recrystallization and Precipitation Behaviors During Hot Extrusion of Pure Mg, J. Mater. Sci. Technol., 2020, 44, p 62–75.CrossRef
36.
go back to reference T.T. Sasaki, T. Ohkubo and K. Hono, Precipitation Hardenable Mg–Bi–Zn Alloys with Prismatic Plate Precipitates, Scr. Mater., 2009, 61(1), p 72–75.CrossRef T.T. Sasaki, T. Ohkubo and K. Hono, Precipitation Hardenable Mg–Bi–Zn Alloys with Prismatic Plate Precipitates, Scr. Mater., 2009, 61(1), p 72–75.CrossRef
37.
go back to reference M. Keyvani, R. Mahmudi and G. Nayyeri, Microstructure and Impression Creep Characteristics of Cast Mg-5Sn-xBi Magnesium Alloys, Metall. Mater. Trans. A, 2010, 42(7), p 1990–2003.CrossRef M. Keyvani, R. Mahmudi and G. Nayyeri, Microstructure and Impression Creep Characteristics of Cast Mg-5Sn-xBi Magnesium Alloys, Metall. Mater. Trans. A, 2010, 42(7), p 1990–2003.CrossRef
38.
go back to reference J. Go, S.-C. Jin, H. Kim, H. Yu and S.H. Park, Novel Mg–Bi–Al Alloy with Extraordinary Extrudability and High Strength, J. Alloys Compd., 2020, 843, p 156026.CrossRef J. Go, S.-C. Jin, H. Kim, H. Yu and S.H. Park, Novel Mg–Bi–Al Alloy with Extraordinary Extrudability and High Strength, J. Alloys Compd., 2020, 843, p 156026.CrossRef
39.
go back to reference S. Meng, H. Yu, H. Zhang, H. Cui, S.H. Park, W. Zhao and B.S. You, Microstructure and Mechanical Properties of an Extruded Mg-8Bi-1Al-1Zn (wt%) Alloy, Mater. Sci. Eng. A, 2017, 690, p 80–87.CrossRef S. Meng, H. Yu, H. Zhang, H. Cui, S.H. Park, W. Zhao and B.S. You, Microstructure and Mechanical Properties of an Extruded Mg-8Bi-1Al-1Zn (wt%) Alloy, Mater. Sci. Eng. A, 2017, 690, p 80–87.CrossRef
40.
go back to reference Y. Ya Chen and J.G. Wang, Microstructure and Mechanical Properties of as-Cast Mg-Sn-Zn-Y Alloys, J. Alloys Compd., 2018, 740, p 727–734.CrossRef Y. Ya Chen and J.G. Wang, Microstructure and Mechanical Properties of as-Cast Mg-Sn-Zn-Y Alloys, J. Alloys Compd., 2018, 740, p 727–734.CrossRef
41.
go back to reference R. Zhao, W. Zhu, J. Zhang, L. Zhang, J. Zhang and C. Xu, Influence of Ni and Bi Microalloying on Microstructure and Mechanical Properties of as-Cast Low RE LPSO-Containing Mg–Zn–Y–Mn Alloy, Mater. Sci. Eng. A, 2020, 788, p 139594.CrossRef R. Zhao, W. Zhu, J. Zhang, L. Zhang, J. Zhang and C. Xu, Influence of Ni and Bi Microalloying on Microstructure and Mechanical Properties of as-Cast Low RE LPSO-Containing Mg–Zn–Y–Mn Alloy, Mater. Sci. Eng. A, 2020, 788, p 139594.CrossRef
42.
go back to reference J. Majhi and A.K. Mondal, Microstructure and Impression Creep Characteristics of Squeeze-cast AZ91 Magnesium Alloy Containing Ca and/or Bi, Mater. Sci. Eng. A, 2019, 744, p 691–703.CrossRef J. Majhi and A.K. Mondal, Microstructure and Impression Creep Characteristics of Squeeze-cast AZ91 Magnesium Alloy Containing Ca and/or Bi, Mater. Sci. Eng. A, 2019, 744, p 691–703.CrossRef
43.
go back to reference S.H. Park, J.H. Lee, B.G. Moon and B.S. You, Tension–Compression Yield Asymmetry in As-Cast Magnesium Alloy, J. Alloys Compd., 2014, 617, p 277–280.CrossRef S.H. Park, J.H. Lee, B.G. Moon and B.S. You, Tension–Compression Yield Asymmetry in As-Cast Magnesium Alloy, J. Alloys Compd., 2014, 617, p 277–280.CrossRef
44.
go back to reference L. Xiao, G. Yang, H. Qin, J. Ma and W. Jie, Asymmetric Tension-Compression Mechanical Behavior of the As-Cast Mg-4.58Zn-2.6Gd-0.16Zr Alloy, Mater. Sci. Eng. A, 2021, 801, p 140439.CrossRef L. Xiao, G. Yang, H. Qin, J. Ma and W. Jie, Asymmetric Tension-Compression Mechanical Behavior of the As-Cast Mg-4.58Zn-2.6Gd-0.16Zr Alloy, Mater. Sci. Eng. A, 2021, 801, p 140439.CrossRef
45.
go back to reference Y. Gui, Y. Cui, H. Bian, Q. Li, L. Ouyang and A. Chiba, Role of Slip and 10–12 Twin on the Crystal Plasticity in Mg-RE Alloy During Deformation Process at Room Temperature, J. Mater. Sci. Technol, 2021, 80, p 279–296.CrossRef Y. Gui, Y. Cui, H. Bian, Q. Li, L. Ouyang and A. Chiba, Role of Slip and 10–12 Twin on the Crystal Plasticity in Mg-RE Alloy During Deformation Process at Room Temperature, J. Mater. Sci. Technol, 2021, 80, p 279–296.CrossRef
46.
go back to reference S.H. Park, J.H. Bae, S.-H. Kim, J. Yoon and B.S. You, Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-06Zn Alloy, Metall. Mater. Trans. A, 2015, 46(12), p 5482–5488.CrossRef S.H. Park, J.H. Bae, S.-H. Kim, J. Yoon and B.S. You, Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-06Zn Alloy, Metall. Mater. Trans. A, 2015, 46(12), p 5482–5488.CrossRef
47.
go back to reference A. Kula, C.J. Silva and M. Niewczas, Grain Size Effect on Deformation Behaviour of Mg–Sc Alloys, J. Alloys Compd., 2017, 727, p 642–657.CrossRef A. Kula, C.J. Silva and M. Niewczas, Grain Size Effect on Deformation Behaviour of Mg–Sc Alloys, J. Alloys Compd., 2017, 727, p 642–657.CrossRef
48.
go back to reference X.Q. Zeng, Y.X. Wang, W.J. Ding, A.A. Luo and A.K. Sachdev, Effect of Strontium on the Microstructure, Mechanical Properties, and Fracture Behavior of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2006, 37A, p 1333–1341.CrossRef X.Q. Zeng, Y.X. Wang, W.J. Ding, A.A. Luo and A.K. Sachdev, Effect of Strontium on the Microstructure, Mechanical Properties, and Fracture Behavior of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2006, 37A, p 1333–1341.CrossRef
49.
go back to reference J. Wang, H. Zhou, L. Wang, S. Zhu and S. Guan, Microstructure, Mechanical Properties and Deformation Mechanisms of an As-Cast Mg–Zn–Y–Nd–Zr Alloy for Stent Applications, J. Mater. Sci. Technol., 2019, 35(7), p 1211–1217.CrossRef J. Wang, H. Zhou, L. Wang, S. Zhu and S. Guan, Microstructure, Mechanical Properties and Deformation Mechanisms of an As-Cast Mg–Zn–Y–Nd–Zr Alloy for Stent Applications, J. Mater. Sci. Technol., 2019, 35(7), p 1211–1217.CrossRef
50.
go back to reference Y. Ali, D. Qiu, B. Jiang, F. Pan and M.-X. Zhang, Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article, J. Alloys Compd., 2015, 619, p 639–651.CrossRef Y. Ali, D. Qiu, B. Jiang, F. Pan and M.-X. Zhang, Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article, J. Alloys Compd., 2015, 619, p 639–651.CrossRef
51.
go back to reference D. StJohn, M. Qian, M.A. Easton, P. Cao and Z. Hildebrand, Grain Refinement of Magnesium Alloys, Metall. Mater. Trans. A, 2005, 36, p 1669–1679.CrossRef D. StJohn, M. Qian, M.A. Easton, P. Cao and Z. Hildebrand, Grain Refinement of Magnesium Alloys, Metall. Mater. Trans. A, 2005, 36, p 1669–1679.CrossRef
52.
go back to reference N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806.CrossRef N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806.CrossRef
53.
go back to reference H. Somekawa and T. Mukai, Hall-Petch Relation for Deformation Twinning in Solid Solution Magnesium Alloys, Mater. Sci. Eng. A, 2013, 561, p 378–385.CrossRef H. Somekawa and T. Mukai, Hall-Petch Relation for Deformation Twinning in Solid Solution Magnesium Alloys, Mater. Sci. Eng. A, 2013, 561, p 378–385.CrossRef
54.
go back to reference H. Yu, Y. Xin, M. Wang and Q. Liu, Hall-Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol, 2018, 34(2), p 248–256.CrossRef H. Yu, Y. Xin, M. Wang and Q. Liu, Hall-Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol, 2018, 34(2), p 248–256.CrossRef
55.
go back to reference W.J. Kim, H.G. Jeong and H.T. Jeong, Achieving High Strength and High Ductility in Magnesium Alloys Using Severe Plastic Deformation Combined with Low-Temperature Aging, Scr. Mater., 2009, 61(11), p 1040–1043.CrossRef W.J. Kim, H.G. Jeong and H.T. Jeong, Achieving High Strength and High Ductility in Magnesium Alloys Using Severe Plastic Deformation Combined with Low-Temperature Aging, Scr. Mater., 2009, 61(11), p 1040–1043.CrossRef
56.
go back to reference L.A. Gypen and A. Deruyttere, Multicomponent Solid-Solution Hardening, J. Mater. Sci., 1977, 12(5), p 1028–1033.CrossRef L.A. Gypen and A. Deruyttere, Multicomponent Solid-Solution Hardening, J. Mater. Sci., 1977, 12(5), p 1028–1033.CrossRef
57.
go back to reference B.Q. Shi, R.S. Chen and W. Ke, Solid Solution Strengthening in Polycrystals of Mg–Sn Binary Alloys, J. Alloys Compd., 2011, 509(7), p 3357–3362.CrossRef B.Q. Shi, R.S. Chen and W. Ke, Solid Solution Strengthening in Polycrystals of Mg–Sn Binary Alloys, J. Alloys Compd., 2011, 509(7), p 3357–3362.CrossRef
58.
go back to reference L. Gao, R.S. Chen and E.H. Han, Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys, J. Alloys Compd., 2009, 481(1–2), p 379–384.CrossRef L. Gao, R.S. Chen and E.H. Han, Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys, J. Alloys Compd., 2009, 481(1–2), p 379–384.CrossRef
59.
go back to reference C.R. Hutchinson, J.F. Nie and S. Gorsse, Modeling the Precipitation Processes and Strengthening Mechanisms in a Mg-Al-(Zn) AZ91 Alloy, Metall. Mater. Trans. A, 2005, 36A(8), p 2093–2105.CrossRef C.R. Hutchinson, J.F. Nie and S. Gorsse, Modeling the Precipitation Processes and Strengthening Mechanisms in a Mg-Al-(Zn) AZ91 Alloy, Metall. Mater. Trans. A, 2005, 36A(8), p 2093–2105.CrossRef
60.
go back to reference W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang and B.S. You, Strengthening Mechanisms of Indirect-Extruded Mg–Sn Based Alloys at Room Temperature, J. Magnes. Alloys, 2014, 2(4), p 299–304.CrossRef W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang and B.S. You, Strengthening Mechanisms of Indirect-Extruded Mg–Sn Based Alloys at Room Temperature, J. Magnes. Alloys, 2014, 2(4), p 299–304.CrossRef
61.
go back to reference I. Toda-Caraballo, E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Understanding the Factors Influencing Yield Strength on Mg Alloys, Acta Mater., 2014, 75, p 287–296.CrossRef I. Toda-Caraballo, E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Understanding the Factors Influencing Yield Strength on Mg Alloys, Acta Mater., 2014, 75, p 287–296.CrossRef
62.
go back to reference Y. Wang, Z. Liu, Y. Zhou, X. Yang, J. Tang, X. Liu, J. Li and G. Le, Microstructure and Mechanical Properties of TiN Particles Strengthened 316L Steel Prepared by Laser Melting Deposition Process, Mater. Sci. Eng. A, 2021, 814, p 141220.CrossRef Y. Wang, Z. Liu, Y. Zhou, X. Yang, J. Tang, X. Liu, J. Li and G. Le, Microstructure and Mechanical Properties of TiN Particles Strengthened 316L Steel Prepared by Laser Melting Deposition Process, Mater. Sci. Eng. A, 2021, 814, p 141220.CrossRef
63.
go back to reference Y. Bai, W.-L. Cheng, S.-C. Ma, J. Zhang, C. Guo and Y. Zhang, Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg–8Sn–4Zn–2Al Alloys, Acta Metallurgica Sinica (English Letters), 2017, 31(5), p 487–495.CrossRef Y. Bai, W.-L. Cheng, S.-C. Ma, J. Zhang, C. Guo and Y. Zhang, Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg–8Sn–4Zn–2Al Alloys, Acta Metallurgica Sinica (English Letters), 2017, 31(5), p 487–495.CrossRef
64.
go back to reference D. Qiu and M.-X. Zhang, Strengthening Mechanisms and their Superposition Law in an Age-Hardenable Mg-10 wt pct Y Alloy, Metall. Mater. Trans. A, 2012, 43(9), p 3314–3324.CrossRef D. Qiu and M.-X. Zhang, Strengthening Mechanisms and their Superposition Law in an Age-Hardenable Mg-10 wt pct Y Alloy, Metall. Mater. Trans. A, 2012, 43(9), p 3314–3324.CrossRef
Metadata
Title
Effect of Bi and Zn Additions on the Microstructures and Mechanical Properties of As-Cast Mg–7Sn–2Al-Based Alloys
Authors
Rui Feng
Xin Li
Xuefei Huang
Weigang Huang
Publication date
17-01-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06494-6

Other articles of this Issue 5/2022

Journal of Materials Engineering and Performance 5/2022 Go to the issue

Premium Partners