Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2014

01-08-2014

Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy

Authors: S. Fida Hassan, M. Paramsothy, Z. M. Gasem, F. Patel, M. Gupta

Published in: Journal of Materials Engineering and Performance | Issue 8/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Room-temperature tensile properties of AZ31 alloy have significantly been improved when reinforced with carbon nanotube via ingot metallurgy process. However, high-temperature (up to 250 °C) elongation-to-failure tensile test of the developed nanocomposite revealed a considerable softening in the AZ31 alloy matrix accompanied by an incredible ductility increment (up to 132%). Microstructural characterization of the fractured samples revealed that the dynamic recrystallization process has induced a complete recrystallization in the AZ31 alloy at a lower temperature (150 °C) followed by substantial grain growth at a higher temperature used in this study. Fractography on the fractured surfaces revealed that the room-temperature mixed brittle-ductile modes of fracture behavior of AZ31 alloy have transformed into a complete ductile mode of fracture at high temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes, Nature, 1996, 381(6584), p 678–680CrossRef M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes, Nature, 1996, 381(6584), p 678–680CrossRef
2.
go back to reference M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287(5453), p 637–640CrossRef M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287(5453), p 637–640CrossRef
3.
go back to reference M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, New Jersey, 2010 M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, New Jersey, 2010
4.
go back to reference S.D. Logan, A Lightweight Automobile Body Concept Featuring Ultra-Large, Thin-Wall Structural Magnesium Castings, Magnesium Technology 2007, S. Randy et al., Ed., Wiley, New Jersey, 2007, p 41–49 S.D. Logan, A Lightweight Automobile Body Concept Featuring Ultra-Large, Thin-Wall Structural Magnesium Castings, Magnesium Technology 2007, S. Randy et al., Ed., Wiley, New Jersey, 2007, p 41–49
5.
go back to reference E. Carreño-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forró, and R. Schaller, Carbon Nanotube/Magnesium Composites, Phys. Status Solidi A, 2004, 201(8), p R53–R55CrossRef E. Carreño-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forró, and R. Schaller, Carbon Nanotube/Magnesium Composites, Phys. Status Solidi A, 2004, 201(8), p R53–R55CrossRef
6.
go back to reference Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, and A. Koide, Multi-Walled Carbon Nanotube-Reinforced Magnesium Alloy Composites, Scr. Mater., 2008, 58(4), p 267–270CrossRef Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, and A. Koide, Multi-Walled Carbon Nanotube-Reinforced Magnesium Alloy Composites, Scr. Mater., 2008, 58(4), p 267–270CrossRef
7.
go back to reference Q. Li, A. Viereckl, C.A. Rottmair, and R.F. Singer, Improved Processing of Carbon Nanotube/Magnesium Alloy Composites, Compos. Sci. Technol., 2009, 69(7-8), p 1193–1199CrossRef Q. Li, A. Viereckl, C.A. Rottmair, and R.F. Singer, Improved Processing of Carbon Nanotube/Magnesium Alloy Composites, Compos. Sci. Technol., 2009, 69(7-8), p 1193–1199CrossRef
8.
go back to reference M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes, J. Nanosci. Nanotechnol., 2010, 10(2), p 956–964CrossRef M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes, J. Nanosci. Nanotechnol., 2010, 10(2), p 956–964CrossRef
9.
go back to reference R. Kawalla, Magnesium and Magnesium Alloy, Plasticity and Structure, E. Hadasik, Ed., Publisher of Silesian University of Technology, Gliwice, 2005, p 199–221 R. Kawalla, Magnesium and Magnesium Alloy, Plasticity and Structure, E. Hadasik, Ed., Publisher of Silesian University of Technology, Gliwice, 2005, p 199–221
10.
go back to reference M.M. Myshlyaev, H.J. Mcqueen, and E. Konopleva, Microstructural Development in Mg Alloy AZ31 During Hot Working, Mater. Sci. Eng. A, 2002, 337(1-2), p 121–127CrossRef M.M. Myshlyaev, H.J. Mcqueen, and E. Konopleva, Microstructural Development in Mg Alloy AZ31 During Hot Working, Mater. Sci. Eng. A, 2002, 337(1-2), p 121–127CrossRef
11.
go back to reference S.F. Hassan, M. Paramsothy, F. Patel, and M. Gupta, High Temperature Tensile Response of Nano-Al2O3 Reinforced AZ31 Nanocomposites, Mater. Sci. Eng. A, 2012, 558, p 278–284CrossRef S.F. Hassan, M. Paramsothy, F. Patel, and M. Gupta, High Temperature Tensile Response of Nano-Al2O3 Reinforced AZ31 Nanocomposites, Mater. Sci. Eng. A, 2012, 558, p 278–284CrossRef
12.
go back to reference M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Adding Carbon Nanotubes and Integrating with AA5052 Aluminium Alloy Core to Simultaneously Enhance Stiffness, Strength and Failure Strain of AZ31 Magnesium Alloy, Compos. Part A: Appl. Sci. Manuf., 2009, 40(9), p 1490–1500CrossRef M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Adding Carbon Nanotubes and Integrating with AA5052 Aluminium Alloy Core to Simultaneously Enhance Stiffness, Strength and Failure Strain of AZ31 Magnesium Alloy, Compos. Part A: Appl. Sci. Manuf., 2009, 40(9), p 1490–1500CrossRef
13.
go back to reference S.F. Hassan and M. Gupta, Enhancing Physical and Mechanical Properties of Mg Using Nano-Sized Al2O3 Particulates as Reinforcement, Metall. Mater. Trans. A, 2005, 36A, p 2253–2258CrossRef S.F. Hassan and M. Gupta, Enhancing Physical and Mechanical Properties of Mg Using Nano-Sized Al2O3 Particulates as Reinforcement, Metall. Mater. Trans. A, 2005, 36A, p 2253–2258CrossRef
14.
go back to reference S.F. Hassan and M. Gupta, Effect of Different Types of Nano-Size Oxide Particulates on Microstructural and Mechanical Properties of Elemental Mg, J. Mater. Sci., 2006, 41, p 2229–2236CrossRef S.F. Hassan and M. Gupta, Effect of Different Types of Nano-Size Oxide Particulates on Microstructural and Mechanical Properties of Elemental Mg, J. Mater. Sci., 2006, 41, p 2229–2236CrossRef
15.
go back to reference C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique, Nanotech, 2006, 17(1), p 7–12CrossRef C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique, Nanotech, 2006, 17(1), p 7–12CrossRef
16.
go back to reference L.M. Tham, M. Gupta, and L. Cheng, Influence of Processing Parameters During Disintegrated Melt Deposition Processing on Near Net Shape Synthesis of Aluminum Based Metal Matrix Composites, Mater. Sci. Technol., 1999, 15(10), p 1139–1146CrossRef L.M. Tham, M. Gupta, and L. Cheng, Influence of Processing Parameters During Disintegrated Melt Deposition Processing on Near Net Shape Synthesis of Aluminum Based Metal Matrix Composites, Mater. Sci. Technol., 1999, 15(10), p 1139–1146CrossRef
17.
go back to reference V.V. Ganesh and M. Gupta, Synthesis and Characterization of Stiffness-Critical Materials Using Interconnected Wires as Reinforcement, Mater. Res. Bull., 2000, 35(14), p 2275–2286CrossRef V.V. Ganesh and M. Gupta, Synthesis and Characterization of Stiffness-Critical Materials Using Interconnected Wires as Reinforcement, Mater. Res. Bull., 2000, 35(14), p 2275–2286CrossRef
18.
go back to reference M.H. Al-Saleh and U. Sundararaj, A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites, Carbon, 2009, 47(1), p 2–22CrossRef M.H. Al-Saleh and U. Sundararaj, A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites, Carbon, 2009, 47(1), p 2–22CrossRef
19.
go back to reference M. Gupta, M.O. Lai, and C.Y. Soo, Effect of Type of Processing on the Microstructural Features and Mechanical Properties of Al-Cu/SiC Metal Matrix Composites, Mater. Sci. Eng. A, 1996, 210(1-2), p 114–122CrossRef M. Gupta, M.O. Lai, and C.Y. Soo, Effect of Type of Processing on the Microstructural Features and Mechanical Properties of Al-Cu/SiC Metal Matrix Composites, Mater. Sci. Eng. A, 1996, 210(1-2), p 114–122CrossRef
20.
go back to reference N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, New York, 1999 N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, New York, 1999
21.
go back to reference M. Russell-Stevens, R. Todd, and M. Papakyriacou, Microstructural Analysis of a Carbon Fibre Reinforced AZ91D Magnesium Alloy Composite, Surf. Interface Anal., 2005, 37(3), p 336–342CrossRef M. Russell-Stevens, R. Todd, and M. Papakyriacou, Microstructural Analysis of a Carbon Fibre Reinforced AZ91D Magnesium Alloy Composite, Surf. Interface Anal., 2005, 37(3), p 336–342CrossRef
22.
go back to reference M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, The Effective Reinforcement of Magnesium Alloy ZK60A Using Al2O3 Nanoparticles, J. Nanopart. Res., 2011, 13(10), p 4855–4866CrossRef M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, The Effective Reinforcement of Magnesium Alloy ZK60A Using Al2O3 Nanoparticles, J. Nanopart. Res., 2011, 13(10), p 4855–4866CrossRef
23.
go back to reference Y.M. Kim, C.D. Yim, and B.S. You, Grain Refining Mechanism in Mg-Al Base Alloys with Carbon Addition, Scr. Mater., 2007, 57(8), p 691–694CrossRef Y.M. Kim, C.D. Yim, and B.S. You, Grain Refining Mechanism in Mg-Al Base Alloys with Carbon Addition, Scr. Mater., 2007, 57(8), p 691–694CrossRef
24.
go back to reference Q.B. Nguyen and M. Gupta, Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ31B Using Nano-Al2O3 Particulates, J. Alloy Compd., 2008, 459(1-2), p 244–250CrossRef Q.B. Nguyen and M. Gupta, Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ31B Using Nano-Al2O3 Particulates, J. Alloy Compd., 2008, 459(1-2), p 244–250CrossRef
25.
go back to reference L.H. Dai, Z. Ling, and Y.L. Bai, Size-Dependent Inelastic Behavior of Particle-Reinforced Metal Matrix Composites, Compos. Sci. Technol., 2001, 61(8), p 1057–1063CrossRef L.H. Dai, Z. Ling, and Y.L. Bai, Size-Dependent Inelastic Behavior of Particle-Reinforced Metal Matrix Composites, Compos. Sci. Technol., 2001, 61(8), p 1057–1063CrossRef
26.
go back to reference T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993CrossRef T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993CrossRef
27.
go back to reference M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970, 21(170), p 399–424CrossRef M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970, 21(170), p 399–424CrossRef
28.
go back to reference R.J. Arsenault and N. Shi, Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng. A, 1986, 81, p 175–187CrossRef R.J. Arsenault and N. Shi, Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng. A, 1986, 81, p 175–187CrossRef
29.
go back to reference G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988
30.
go back to reference I.A. Maksoud, H. Ahmed, and J. Rodel, Investigation of the Effect of Strain Rate and Temperature on the Deformability and Microstructure Evolution of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 504(1–2), p 40–48CrossRef I.A. Maksoud, H. Ahmed, and J. Rodel, Investigation of the Effect of Strain Rate and Temperature on the Deformability and Microstructure Evolution of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 504(1–2), p 40–48CrossRef
31.
go back to reference H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, Modelling of formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at elevated temperature. Proceedings of 13th AMME Conference, Poland, 2005, p 671–674 H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, Modelling of formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at elevated temperature. Proceedings of 13th AMME Conference, Poland, 2005, p 671–674
32.
go back to reference H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, Springer, Berlin, 2006 H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, Springer, Berlin, 2006
33.
go back to reference R.W. Cahn, Physical Metallurgy, North-Holland Publishing Company, Netherland, 1970 R.W. Cahn, Physical Metallurgy, North-Holland Publishing Company, Netherland, 1970
34.
go back to reference S.F. Hassan and M. Gupta, Development of Nano-Y2O3 Containing Magnesium Nanocomposites Using Solidification Processing, J. Alloy. Compd., 2007, 429(1-2), p 176–183CrossRef S.F. Hassan and M. Gupta, Development of Nano-Y2O3 Containing Magnesium Nanocomposites Using Solidification Processing, J. Alloy. Compd., 2007, 429(1-2), p 176–183CrossRef
35.
go back to reference C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium with Carbon Nanotubes, Mater. Sci. Eng. A, 2006, 423(1–2), p 153–156CrossRef C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium with Carbon Nanotubes, Mater. Sci. Eng. A, 2006, 423(1–2), p 153–156CrossRef
36.
go back to reference W. Yang and W.B. Lee, Mesoplasticity and Its Applications, Springer, Germany, 1993CrossRef W. Yang and W.B. Lee, Mesoplasticity and Its Applications, Springer, Germany, 1993CrossRef
Metadata
Title
Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy
Authors
S. Fida Hassan
M. Paramsothy
Z. M. Gasem
F. Patel
M. Gupta
Publication date
01-08-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1050-4

Other articles of this Issue 8/2014

Journal of Materials Engineering and Performance 8/2014 Go to the issue

Premium Partners