Skip to main content
Top
Published in: Journal of Iron and Steel Research International 5/2020

16-04-2020 | Original Paper

Effect of carbon solution-loss reaction on properties of coke in blast furnace

Authors: Qi-hang Liu, Shuang-ping Yang, Chen Wang, Yi-long Ji

Published in: Journal of Iron and Steel Research International | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pore structure of coke under CO2 atmosphere was investigated by the carbon solution-loss reaction experiment. The results show that the pore size distribution of coke gradually changes from dispersion to relative concentration with the increase in carbon loss rate, but it tends to be dispersed again in the late stage of the reaction, and the pore volume and specific surface area also increase first and then decrease with the increase in carbon loss rate. Scanning electron microscopy results show that the evolution of coke pores is from the formation of micropores to the expansion of micropores, and finally the micropore and mesopores collapse to form a large number of string holes. The chemical bonds and functional groups of different reacted cokes were analyzed by Fourier-transform infrared spectroscopy. Furthermore, the microstructure of reacted cokes was analyzed by optical microscopy, and then the ordering of the affinity of different microstructures with CO2 was given. The volume hypothesis which was the theory about energy size of comminution was adopted to analyze the degradation behavior of reacted cokes. The breakage energy of reacted cokes was calculated by volume hypothesis, and the power consumption coefficient CK of different reacted cokes was determined by drum experiment, and then the degradation behavior of reacted cokes under different power consumptions was predicted.
Literature
[1]
go back to reference H.W. Gudenau, D. Senk, K. Fukada, A. Babich, C. Fröhling, in: International BF Lower Zone Symposium, Australasian Institute of Mining & Metallurgy, Illawara, Australian, 2002, pp. 1–12. H.W. Gudenau, D. Senk, K. Fukada, A. Babich, C. Fröhling, in: International BF Lower Zone Symposium, Australasian Institute of Mining & Metallurgy, Illawara, Australian, 2002, pp. 1–12.
[2]
go back to reference T. Hilding, S. Gupta, V. Sahajwalla, B. Björkman, J.O. Wikström, ISIJ Int. 45 (2005) 1041-1050.CrossRef T. Hilding, S. Gupta, V. Sahajwalla, B. Björkman, J.O. Wikström, ISIJ Int. 45 (2005) 1041-1050.CrossRef
[3]
go back to reference K.J. Li, R. Khanna, J.L. Zhang, Z.J. Liu, V. Sahajwalla, T.J. Yang, D.W. Kong, Fuel 133 (2014) 194–215.CrossRef K.J. Li, R. Khanna, J.L. Zhang, Z.J. Liu, V. Sahajwalla, T.J. Yang, D.W. Kong, Fuel 133 (2014) 194–215.CrossRef
[4]
go back to reference X. Xing, H. Rogers, G.H. Zhang, K. Hockings, P. Zulli, O. Ostrovski, ISIJ Int. 56 (2016) 786-793.CrossRef X. Xing, H. Rogers, G.H. Zhang, K. Hockings, P. Zulli, O. Ostrovski, ISIJ Int. 56 (2016) 786-793.CrossRef
[5]
go back to reference W.T. Guo, J.S. Wang, X.F She, Q.G. Xue, Z.C. Guo, J. Fuel Chem. Technol. 43 (2015) 654–662. W.T. Guo, J.S. Wang, X.F She, Q.G. Xue, Z.C. Guo, J. Fuel Chem. Technol. 43 (2015) 654–662.
[6]
[7]
go back to reference G. Wang, J. Zhang, X. Hou, J. Shao, W. Geng, Bioresour. Technol. 177 (2015) 66–73.CrossRef G. Wang, J. Zhang, X. Hou, J. Shao, W. Geng, Bioresour. Technol. 177 (2015) 66–73.CrossRef
[8]
go back to reference T. Xu, G.W. Wang, J.L. Zhang, T.F. Song, R.S. Xu, J. Iron Steel Res. Int. 24 (2017) 985–990.CrossRef T. Xu, G.W. Wang, J.L. Zhang, T.F. Song, R.S. Xu, J. Iron Steel Res. Int. 24 (2017) 985–990.CrossRef
[9]
go back to reference R. Xu, B. Dai, W. Wang, J. Schenk, A. Bhattacharyya, Z. Xue, Energy Fuels 32 (2018) 1188–1195.CrossRef R. Xu, B. Dai, W. Wang, J. Schenk, A. Bhattacharyya, Z. Xue, Energy Fuels 32 (2018) 1188–1195.CrossRef
[10]
go back to reference S. Gupta, V. Sahajwalla, P. Chaubal, T. Youmans, Metall. Mater. Trans. B 36 (2005) 385–394.CrossRef S. Gupta, V. Sahajwalla, P. Chaubal, T. Youmans, Metall. Mater. Trans. B 36 (2005) 385–394.CrossRef
[11]
go back to reference P. Cui, W.W. Wang, Z.L. Wang, L. Huang, K.L. Qu, Fuel Chem. Processes 45 (2014) No. 4, 1–3. P. Cui, W.W. Wang, Z.L. Wang, L. Huang, K.L. Qu, Fuel Chem. Processes 45 (2014) No. 4, 1–3.
[12]
go back to reference K. Li, J. Zhang, Z. Liu, X. Ning, T. Wang, Ind. Eng. Chem. Res. 53 (2014) 5737–5748.CrossRef K. Li, J. Zhang, Z. Liu, X. Ning, T. Wang, Ind. Eng. Chem. Res. 53 (2014) 5737–5748.CrossRef
[13]
go back to reference W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Fuel Process. Technol. 159 (2017) 118–127.CrossRef W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Fuel Process. Technol. 159 (2017) 118–127.CrossRef
[14]
[15]
go back to reference J.A. Menéndez, R. Álvarez, J.J. Pis, Ironmak. Steelmak. 26 (1999) 117–121.CrossRef J.A. Menéndez, R. Álvarez, J.J. Pis, Ironmak. Steelmak. 26 (1999) 117–121.CrossRef
[16]
go back to reference C. Zou, L.Y. Wen, J.X. Zhao, R.M. Shi, J. Iron Steel Res. Int. 24 (2017) 8-17.CrossRef C. Zou, L.Y. Wen, J.X. Zhao, R.M. Shi, J. Iron Steel Res. Int. 24 (2017) 8-17.CrossRef
[17]
go back to reference L. North, K. Blackmore, K. Nesbitt, M.R. Mahoney, Fuel 219 (2018) 446–466.CrossRef L. North, K. Blackmore, K. Nesbitt, M.R. Mahoney, Fuel 219 (2018) 446–466.CrossRef
[18]
go back to reference R. Guo, Q. Wang, X.F. Zhao, J.F. Sun, Chin. J. Process Eng. 13 (2013) 512–518. R. Guo, Q. Wang, X.F. Zhao, J.F. Sun, Chin. J. Process Eng. 13 (2013) 512–518.
[19]
go back to reference R. Guo, Q. Wang, S. Zhang, Coal Conversion 35 (2012) No. 2, 12-16. R. Guo, Q. Wang, S. Zhang, Coal Conversion 35 (2012) No. 2, 12-16.
[20]
[21]
[22]
go back to reference J. Haapakangas, J. Uusitalo, O. Mattila, T. Kokkonen, D. Porter, T. Fabritius, Steel Res. Int. 84 (2013) 65–71.CrossRef J. Haapakangas, J. Uusitalo, O. Mattila, T. Kokkonen, D. Porter, T. Fabritius, Steel Res. Int. 84 (2013) 65–71.CrossRef
[23]
go back to reference Q. Wang, R. Guo, X. Zhao, J. Sun, S. Zhang, W. Liu, Fuel 182 (2016) 879–885.CrossRef Q. Wang, R. Guo, X. Zhao, J. Sun, S. Zhang, W. Liu, Fuel 182 (2016) 879–885.CrossRef
[24]
go back to reference W.B. Cheng, Study on the difference of the microstructure of the coke under different coking processes, Anhui University of Technology, Ma’anshan, China, 2015. W.B. Cheng, Study on the difference of the microstructure of the coke under different coking processes, Anhui University of Technology, Ma’anshan, China, 2015.
[25]
go back to reference H.I. Petersen, P. Rosenberg, H.P. Nytoft, Int. J. Coal Geol. 74 (2008) 93-113.CrossRef H.I. Petersen, P. Rosenberg, H.P. Nytoft, Int. J. Coal Geol. 74 (2008) 93-113.CrossRef
[26]
go back to reference Q. Li, B. Lin, C. Zhao, W. Wu, Proceedings of the CSEE 31 (2011) 46-52. Q. Li, B. Lin, C. Zhao, W. Wu, Proceedings of the CSEE 31 (2011) 46-52.
[27]
go back to reference D. Zhang, Journal of Northwest Institute of Light Industry 2 (1983) 46-54. D. Zhang, Journal of Northwest Institute of Light Industry 2 (1983) 46-54.
[28]
go back to reference S. Zhou, M. Zhang, Introduction of powder engineering, Science Press, Beijing, China, 2010. S. Zhou, M. Zhang, Introduction of powder engineering, Science Press, Beijing, China, 2010.
[29]
go back to reference F. Kick, Law of comminution degree and its application, ArthurFelixVerlag, Leipzig, 1885. F. Kick, Law of comminution degree and its application, ArthurFelixVerlag, Leipzig, 1885.
[30]
go back to reference X.M. Liu, Y.X. Wu, J.F. Lu, G.X. Yue, Proceedings of the CSEE 33 (2013) 1-8. X.M. Liu, Y.X. Wu, J.F. Lu, G.X. Yue, Proceedings of the CSEE 33 (2013) 1-8.
Metadata
Title
Effect of carbon solution-loss reaction on properties of coke in blast furnace
Authors
Qi-hang Liu
Shuang-ping Yang
Chen Wang
Yi-long Ji
Publication date
16-04-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 5/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00399-9

Other articles of this Issue 5/2020

Journal of Iron and Steel Research International 5/2020 Go to the issue

Premium Partners