Skip to main content
Top
Published in: Journal of Iron and Steel Research International 5/2020

24-02-2020 | Original Paper

Thermal conductivity prediction of MgAl2O4: a non-equilibrium molecular dynamics calculation

Authors: Cheng-ming Ni, Hua-wei Fan, Xu-dong Wang, Man Yao

Published in: Journal of Iron and Steel Research International | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnesium aluminate spinel (MgAl2O4) is widely used in steel metallurgy industry. Thermal conductivity at high temperature significantly influences the cooling process of blast furnace and the heat preservation of steel converter. The effect of external (temperature) and internal (antisite defect and grain boundary) factors on the thermal conductivity of MgAl2O4 was studied with non-equilibrium molecular dynamics. The main factors affecting the thermal conductivity of MgAl2O4 were summarized. In the temperature range of 100–2000 K, the results showed that the thermal conductivity of MgAl2O4 changed from 11.54 to 4.95 W/(m K) with the increase in temperature and was relatively stable at the temperature above 1000 K. The thermal conductivity of MgAl2O4 declined first and then rose with the increase in the antisite defects, and the minimum value was 6.95 W/(m K) at the inversion parameter i = 0.35. In addition, grain boundaries reduced the thermal conductivity of MgAl2O4 by 20%–30% at temperature below 1000 K comparing with the non-grain boundary system. The grain boundary rotation angle at temperature above 1000 K had less effect on the thermal conductivity than that below 1000 K. Present simulation scheme for thermal conductivity of MgAl2O4 can also be applied to the study of other nonmetallic ceramics.
Literature
[1]
go back to reference L.L. Xu, X.L. Guo, Y.J. Zhai, X.Y. Ren, S.P. Hu, X.J. Liu, Z. Liu, Z.N. Zhou, Refractories Forum 1 (2015) 83–85. L.L. Xu, X.L. Guo, Y.J. Zhai, X.Y. Ren, S.P. Hu, X.J. Liu, Z. Liu, Z.N. Zhou, Refractories Forum 1 (2015) 83–85.
[2]
go back to reference W.H. Tong, F.M. Shen, W.Z. Wang, Y.S. Yang, Acta Metall. Sin. 38 (2002) 983–988. W.H. Tong, F.M. Shen, W.Z. Wang, Y.S. Yang, Acta Metall. Sin. 38 (2002) 983–988.
[3]
go back to reference K. Cao, Study and application on complex lining of rotary kiln, Wuhan University of Science and Technology, Wuhan, China, 2006. K. Cao, Study and application on complex lining of rotary kiln, Wuhan University of Science and Technology, Wuhan, China, 2006.
[4]
go back to reference J. Li, Fabrication and properties of transparent magnesium aluminate spinel ceramics, Harbin Institute of Technology, Harbin, China, 2015. J. Li, Fabrication and properties of transparent magnesium aluminate spinel ceramics, Harbin Institute of Technology, Harbin, China, 2015.
[5]
go back to reference B. Li, Development of refractories and technology of ladle, Northeastern University, Shenyang, China, 2012. B. Li, Development of refractories and technology of ladle, Northeastern University, Shenyang, China, 2012.
[6]
go back to reference H. Wang, Study on blast furnace lining thickness and temperature online monitoring, Inner Mongolia University of Science and Technology, Baotou, China, 2015. H. Wang, Study on blast furnace lining thickness and temperature online monitoring, Inner Mongolia University of Science and Technology, Baotou, China, 2015.
[7]
go back to reference J. Wei, X.L. Hou, J.G. Zhou, J. Iron Steel Res. 6 (1994) No. S1, 1–9. J. Wei, X.L. Hou, J.G. Zhou, J. Iron Steel Res. 6 (1994) No. S1, 1–9.
[8]
go back to reference P. Shukla, A. Chernatynskiy, J.C. Nino, S.B. Sinnott, S.R. Phillpot, J. Mater. Sci. 46 (2011) 55–62.CrossRef P. Shukla, A. Chernatynskiy, J.C. Nino, S.B. Sinnott, S.R. Phillpot, J. Mater. Sci. 46 (2011) 55–62.CrossRef
[9]
go back to reference S.A.T. Redfern, R.J. Harrison, H.S.C. O’Neill, D.R.R. Wood, American Mineralogist 84 (1999) 299–310.CrossRef S.A.T. Redfern, R.J. Harrison, H.S.C. O’Neill, D.R.R. Wood, American Mineralogist 84 (1999) 299–310.CrossRef
[10]
go back to reference S. Morooka, S. Zhang, T. Nishikawa, H. Awaji, J. Ceram. Soc. Jpn. 107 (1999) 1225–1228.CrossRef S. Morooka, S. Zhang, T. Nishikawa, H. Awaji, J. Ceram. Soc. Jpn. 107 (1999) 1225–1228.CrossRef
[11]
go back to reference S. Lin, Thermal conductivity of boron nitride by molecular dynamic simulations, Southeast University, Nanjing, China, 2015. S. Lin, Thermal conductivity of boron nitride by molecular dynamic simulations, Southeast University, Nanjing, China, 2015.
[12]
go back to reference B. Liu, Thermal conductivity of MoS2 thin films by molecular dynamic simulations, Southeast University, Nanjing, China, 2015. B. Liu, Thermal conductivity of MoS2 thin films by molecular dynamic simulations, Southeast University, Nanjing, China, 2015.
[13]
go back to reference Q. Chen, Investigation on heat transfer characteristics of nanoscale fractal structure by molecular dynamics simulation, Southeast University, Nanjing, China, 2015. Q. Chen, Investigation on heat transfer characteristics of nanoscale fractal structure by molecular dynamics simulation, Southeast University, Nanjing, China, 2015.
[14]
go back to reference D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81 (2010) 214305.CrossRef D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81 (2010) 214305.CrossRef
[15]
[16]
go back to reference M.R. Harrison, P.P. Edwards, J.B. Goodenough, Philos. Mag. B 52 (1985) 679–699.CrossRef M.R. Harrison, P.P. Edwards, J.B. Goodenough, Philos. Mag. B 52 (1985) 679–699.CrossRef
[17]
go back to reference S. Tosawat, W. Gjindara, T. Chanchana, A. Vittaya, Chin. Phys. Lett. 27 (2010) 026501.CrossRef S. Tosawat, W. Gjindara, T. Chanchana, A. Vittaya, Chin. Phys. Lett. 27 (2010) 026501.CrossRef
[18]
go back to reference B. Schulz, G. Haase, in: Proceedings of the Ninth German-Yugoslav Meeting on Materials Science and Development, Hirsau, Stuttgart, 1989, pp. 16–19. B. Schulz, G. Haase, in: Proceedings of the Ninth German-Yugoslav Meeting on Materials Science and Development, Hirsau, Stuttgart, 1989, pp. 16–19.
[19]
go back to reference R.J.M. Konings, K. Bakker, J.G. Boshoven, H. Hein, M.E. Huntelaar, R.R. van der Laan, J. Nucl. Mater. 274 (1999) 84–90.CrossRef R.J.M. Konings, K. Bakker, J.G. Boshoven, H. Hein, M.E. Huntelaar, R.R. van der Laan, J. Nucl. Mater. 274 (1999) 84–90.CrossRef
[20]
go back to reference N. Nitani, T. Yamashita, T. Matsuda, S.I. Kobayashi, T. Ohmichi, J. Nucl. Mater. 274 (1999) 15–22.CrossRef N. Nitani, T. Yamashita, T. Matsuda, S.I. Kobayashi, T. Ohmichi, J. Nucl. Mater. 274 (1999) 15–22.CrossRef
[21]
go back to reference K.R. Wilkerson, J.D. Smith, T.P. Sander, J.G. Hemrick, J. Am. Ceram. Soc. 96 (2013) 859–866.CrossRef K.R. Wilkerson, J.D. Smith, T.P. Sander, J.G. Hemrick, J. Am. Ceram. Soc. 96 (2013) 859–866.CrossRef
[22]
go back to reference C.C. Gibson, D.L. Taylor, R.H. Bogaard, Database on Properties of Selected Infrared Window and Dome Materials. High Temperature Materials Information Analysis Center Report 27, Defense Technical Information Center, 1996. C.C. Gibson, D.L. Taylor, R.H. Bogaard, Database on Properties of Selected Infrared Window and Dome Materials. High Temperature Materials Information Analysis Center Report 27, Defense Technical Information Center, 1996.
[23]
go back to reference D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis, G. Turri, M.A. Bass, D.E. Zelmon, N. Haynes, Opt. Eng. 52 (2013) 087113.CrossRef D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis, G. Turri, M.A. Bass, D.E. Zelmon, N. Haynes, Opt. Eng. 52 (2013) 087113.CrossRef
[24]
go back to reference R.L. Rudkin, Thermal Diffusivity Measurements on Ceramics at High Temperatures, Proc. 3rd Conf. Thermal Cond. 1963, pp. 794–808. R.L. Rudkin, Thermal Diffusivity Measurements on Ceramics at High Temperatures, Proc. 3rd Conf. Thermal Cond. 1963, pp. 794–808.
[25]
go back to reference D.W. Roy, G.G. Martin Jr., in: Proc. SPIE 1760, Window and Dome Technologies and Materials III, International Society for Optics and Photonics, San Diego, CA, USA, 1992, pp. 2–13. D.W. Roy, G.G. Martin Jr., in: Proc. SPIE 1760, Window and Dome Technologies and Materials III, International Society for Optics and Photonics, San Diego, CA, USA, 1992, pp. 2–13.
[26]
go back to reference M. Burghartz, H. Matzke, C. Léger, G. Vambenepe, M. Rome, J. Alloy. Compd. 271–273 (1998) 544–548.CrossRef M. Burghartz, H. Matzke, C. Léger, G. Vambenepe, M. Rome, J. Alloy. Compd. 271–273 (1998) 544–548.CrossRef
[27]
go back to reference F.A. Kröger, H.J. Vink, in: Solid State Physics, Vol. 3, Academic Press Inc., Elsevier, 1956, pp. 307–435. F.A. Kröger, H.J. Vink, in: Solid State Physics, Vol. 3, Academic Press Inc., Elsevier, 1956, pp. 307–435.
[28]
[29]
go back to reference J.A. Ball, M. Pirzada, R.W. Grimes, M.O. Zacate, D.W. Price, B.P. Uberuaga, J. Phys. Condensed Matter 17 (2005) 7621.CrossRef J.A. Ball, M. Pirzada, R.W. Grimes, M.O. Zacate, D.W. Price, B.P. Uberuaga, J. Phys. Condensed Matter 17 (2005) 7621.CrossRef
[31]
go back to reference I.J. Shon, S.M. Kwak, J.M. Doh, B.J. Park, J.K. Yoon, Res. Chem. Intermed. 39 (2013) 1291–1299.CrossRef I.J. Shon, S.M. Kwak, J.M. Doh, B.J. Park, J.K. Yoon, Res. Chem. Intermed. 39 (2013) 1291–1299.CrossRef
Metadata
Title
Thermal conductivity prediction of MgAl2O4: a non-equilibrium molecular dynamics calculation
Authors
Cheng-ming Ni
Hua-wei Fan
Xu-dong Wang
Man Yao
Publication date
24-02-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 5/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00364-6

Other articles of this Issue 5/2020

Journal of Iron and Steel Research International 5/2020 Go to the issue

Premium Partners