Skip to main content
Top
Published in: Acta Mechanica Sinica 1/2018

29-06-2017 | Research Paper

Effect of compressibility on the hypervelocity penetration

Authors: W. J. Song, X. W. Chen, P. Chen

Published in: Acta Mechanica Sinica | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Birkhoff, G., MacDougall, D.P., Pugh, E.M., et al.: Explosives with lined cavities. J. Appl. Phys. 19, 563–582 (1948) Birkhoff, G., MacDougall, D.P., Pugh, E.M., et al.: Explosives with lined cavities. J. Appl. Phys. 19, 563–582 (1948)
2.
go back to reference Hill, R., Mott, N.F., Pack, D.C., et al.: Theoretical Research Report No. 2/44, Jan. 1944 and 13/44, Mar. 1944. UK Armament Research Department Hill, R., Mott, N.F., Pack, D.C., et al.: Theoretical Research Report No. 2/44, Jan. 1944 and 13/44, Mar. 1944. UK Armament Research Department
3.
go back to reference Eichelberger, R.J.: Experimental test of the theory of penetration by metallic jets. J. Appl. Phys. 27, 63–68 (1956)CrossRef Eichelberger, R.J.: Experimental test of the theory of penetration by metallic jets. J. Appl. Phys. 27, 63–68 (1956)CrossRef
4.
go back to reference Alekseevskii, V.P.: Penetration of a rod into target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1956)CrossRef Alekseevskii, V.P.: Penetration of a rod into target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1956)CrossRef
5.
go back to reference Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef
6.
go back to reference Tate, A.: Further results in the theory of long rod penetration. J. Mech. Phys. Solids 17, 141–50 (1969)CrossRef Tate, A.: Further results in the theory of long rod penetration. J. Mech. Phys. Solids 17, 141–50 (1969)CrossRef
7.
go back to reference Haugstad, B.S., Dullum, O.S.: Finite compressibility in shaped charge jet and long rod penetration—the effect of shocks. J. Appl. Phys. 52, 5066–5071 (1981)CrossRef Haugstad, B.S., Dullum, O.S.: Finite compressibility in shaped charge jet and long rod penetration—the effect of shocks. J. Appl. Phys. 52, 5066–5071 (1981)CrossRef
8.
go back to reference Flis, W.J., Chou, P.C.: Penetration of compressible materials by shaped-charge jets. In: Proceedings of 7th International Symposium on Ballistics, The Hague, The Netherlands, April (1983) Flis, W.J., Chou, P.C.: Penetration of compressible materials by shaped-charge jets. In: Proceedings of 7th International Symposium on Ballistics, The Hague, The Netherlands, April (1983)
9.
go back to reference Backofen, J.E.: Supersonic compressible modeling for shaped charge jets. In: Proceedings of 11th International Symposium on Ballistics, Brussels, Belgium, May (1989) Backofen, J.E.: Supersonic compressible modeling for shaped charge jets. In: Proceedings of 11th International Symposium on Ballistics, Brussels, Belgium, May (1989)
10.
go back to reference Federov, S.V., Bayanova, Y.M.: Hydrodynamic model for penetration of extended projectiles with consideration of material compressibility. In: Proceedings of 25th International Symposium on Ballistics, Beijing, China, May (2010) Federov, S.V., Bayanova, Y.M.: Hydrodynamic model for penetration of extended projectiles with consideration of material compressibility. In: Proceedings of 25th International Symposium on Ballistics, Beijing, China, May (2010)
11.
go back to reference Osipenko, K.Y., Simonov, I.V.: On the jet collision: general model and reduction to the Mie–Grüneisen state equation. Mech. Solids 44, 639–648 (2009)CrossRef Osipenko, K.Y., Simonov, I.V.: On the jet collision: general model and reduction to the Mie–Grüneisen state equation. Mech. Solids 44, 639–648 (2009)CrossRef
12.
go back to reference Flis, W.J.: A model of compressible jet penetration. In: Proceedings of 26th International Symposium on Ballistics, Miami, FL, September 12–16 (2011) Flis, W.J.: A model of compressible jet penetration. In: Proceedings of 26th International Symposium on Ballistics, Miami, FL, September 12–16 (2011)
13.
go back to reference Flis, W.J.: A jet penetration model incorporating effects of compressibility and target strength. Proc. Eng. 58, 204–213 (2013)CrossRef Flis, W.J.: A jet penetration model incorporating effects of compressibility and target strength. Proc. Eng. 58, 204–213 (2013)CrossRef
14.
go back to reference Flis, W.J.: A simplified approximate model of compressible jet penetration. In: Proceedings of 27th International Symposium on Ballistics, Freiburg, Germany, April (2013) Flis, W.J.: A simplified approximate model of compressible jet penetration. In: Proceedings of 27th International Symposium on Ballistics, Freiburg, Germany, April (2013)
15.
go back to reference Liu, M.B., Liu, G.R., Lam, K.Y., et al.: Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations. Shock Waves 12, 509–520 (2003)CrossRef Liu, M.B., Liu, G.R., Lam, K.Y., et al.: Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations. Shock Waves 12, 509–520 (2003)CrossRef
16.
go back to reference Walker, J.D., Grosch, D.J., Mullin, S.A.: A hypervelocity fragment launcher based on an inhibited shaped charge. Int. J. Impact Eng. 14, 763–774 (1993)CrossRef Walker, J.D., Grosch, D.J., Mullin, S.A.: A hypervelocity fragment launcher based on an inhibited shaped charge. Int. J. Impact Eng. 14, 763–774 (1993)CrossRef
17.
go back to reference Walters, W.P., Scheffler, D.R.: A method to increase the tip velocity of a shaped charge jet. In: Proceedings of 23rd International Symposium on Ballistics, Tarragona, Spain, April (2007) Walters, W.P., Scheffler, D.R.: A method to increase the tip velocity of a shaped charge jet. In: Proceedings of 23rd International Symposium on Ballistics, Tarragona, Spain, April (2007)
18.
go back to reference Corbett, B.M.: Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers. Int. J. Impact Eng. 33, 431–440 (2006)CrossRef Corbett, B.M.: Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers. Int. J. Impact Eng. 33, 431–440 (2006)CrossRef
19.
go back to reference Steinberg, D.J.: Equation of state and strength properties of selected materials. Technical Report UCRL-MA-106439, Lawrence Livermore National Laboratory (1991) Steinberg, D.J.: Equation of state and strength properties of selected materials. Technical Report UCRL-MA-106439, Lawrence Livermore National Laboratory (1991)
20.
go back to reference Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef
21.
go back to reference Tate, A.: Long rod penetration models—part II. Extensions to the hydrodynamic theory of penetration. Int. J. Eng. Sci. 28, 599–612 (1986) Tate, A.: Long rod penetration models—part II. Extensions to the hydrodynamic theory of penetration. Int. J. Eng. Sci. 28, 599–612 (1986)
22.
go back to reference Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef
23.
go back to reference Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef
24.
go back to reference Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef
25.
go back to reference Rosenberg, Z., Dekel, E.: A critical examination of the modified Bernoulli equation using two-dimensional simulations of long rod penetration. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef Rosenberg, Z., Dekel, E.: A critical examination of the modified Bernoulli equation using two-dimensional simulations of long rod penetration. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef
Metadata
Title
Effect of compressibility on the hypervelocity penetration
Authors
W. J. Song
X. W. Chen
P. Chen
Publication date
29-06-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 1/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0688-1

Other articles of this Issue 1/2018

Acta Mechanica Sinica 1/2018 Go to the issue

Premium Partners