Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

12-11-2019

Effect of different MnO2 phases (β-, γ-, and ε-) on the microstructure and piezoelectric properties of Pb(Zr1/2Ti1/2)O3–Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 ceramics for energy harvesting

Authors: Junting Liu, Leilei Li, Zhennan Liu, Wanli Wu, Yujian Wang, Jie Xu, Feng Gao

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study reports 0.83Pb(Zr1/2Ti1/2)O3–0.11Pb(Zn1/3Nb2/3)O3–0.06Pb(Ni1/3Nb2/3)O3 (PZNNT) ceramics doped with MnO2 were obtained through the conventional solid-state reaction method. The effects of MnO2 additive with different phases (β-, γ-, and ε-) on the microstructure and piezoelectric properties of PZNNT ceramics were discussed under the same condition. On the basis of X-ray photoelectron spectroscopy (XPS), the results clearly showed that Mn ions in different crystal forms of MnO2 could convert from Mn4+ ions to diverse valence states (Mn2+, Mn3+) and produce different oxygen vacancies. Furthermore, the relevant electric properties of samples increased as follows: PZNNT/β-MnO2 < PZNNT/ε-MnO2 < PZNNT/γ-MnO2. The optimal electric properties could be obtained by adding 1.5 mol% γ-MnO2, the energy conversion factor (d33 × g33), the mechanical quality factor (Qm), the electromechanical coupling factor (kp), and the Curie temperature (Tc) which were 9859 × 10−15 m2/N, 357, 0.556, and 315 °C, respectively. It indicates that γ-MnO2-modified PZNNT ceramics are potential candidate materials for piezoelectric energy harvesting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.V. Trukhanov, V.G. Kostishyn, L.V. Panina et al., Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822 (2017) A.V. Trukhanov, V.G. Kostishyn, L.V. Panina et al., Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822 (2017)
2.
go back to reference S.V. Trukhanov, A.V. Trukhanov, L.V. Panina et al., Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 466, 393 (2018) S.V. Trukhanov, A.V. Trukhanov, L.V. Panina et al., Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 466, 393 (2018)
3.
go back to reference A.V. Trukhanov, L.V. Panina, S.V. Trukhanov et al., Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102 (2016) A.V. Trukhanov, L.V. Panina, S.V. Trukhanov et al., Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102 (2016)
4.
go back to reference A.V. Trukhanov, S.V. Trukhanov, L.V. Panina et al., Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487 (2017) A.V. Trukhanov, S.V. Trukhanov, L.V. Panina et al., Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487 (2017)
5.
go back to reference A. Kumar, K.C.J. Raju, A.R. James, Micro-structural, dielectric, ferroelectric and piezoelectric properties of mechanically processed (Pb1−xLax)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci. 29, 13483 (2018) A. Kumar, K.C.J. Raju, A.R. James, Micro-structural, dielectric, ferroelectric and piezoelectric properties of mechanically processed (Pb1−xLax)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci. 29, 13483 (2018)
6.
go back to reference L.L. Li, J. Xu, F. Gao et al., Recent progress on piezoelectric energy harvesting: structures and materials. Adv. Compos. Hybrid. Mater. 1, 478 (2018) L.L. Li, J. Xu, F. Gao et al., Recent progress on piezoelectric energy harvesting: structures and materials. Adv. Compos. Hybrid. Mater. 1, 478 (2018)
7.
go back to reference R.F. Zhu, Q.H. Zhang, B.J. Fang et al., Domain configuration evolution, dielectric, ferroelectric and piezoelectric properties of 0.32PIN–0.345PMN–0.335PT single crystals. J. Mater. Sci. 28, 12929 (2017) R.F. Zhu, Q.H. Zhang, B.J. Fang et al., Domain configuration evolution, dielectric, ferroelectric and piezoelectric properties of 0.32PIN–0.345PMN–0.335PT single crystals. J. Mater. Sci. 28, 12929 (2017)
8.
go back to reference S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1 (2007) S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1 (2007)
9.
go back to reference S. Priya, Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 42 (2005) S. Priya, Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 42 (2005)
10.
go back to reference L.L. Li, J. Xu, F. Gao et al., Microstructure and electrical properties of Pb(Zr0.5Ti0.5)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 + xS3Ti2O7 ceramics. Ceram. Int. 44, 9934 (2018) L.L. Li, J. Xu, F. Gao et al., Microstructure and electrical properties of Pb(Zr0.5Ti0.5)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 + xS3Ti2O7 ceramics. Ceram. Int. 44, 9934 (2018)
11.
go back to reference H. Liu, R. Nie, Y. Yue et al., Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN-PZT ceramics. Ceram. Int. 41, 11359 (2015) H. Liu, R. Nie, Y. Yue et al., Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN-PZT ceramics. Ceram. Int. 41, 11359 (2015)
12.
go back to reference H.Q. Li, J. Liu, H.T. Yu et al., Relaxor behavior and Raman spectra of CuO-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric ceramics. J. Adv. Ceram. 3, 177 (2014) H.Q. Li, J. Liu, H.T. Yu et al., Relaxor behavior and Raman spectra of CuO-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric ceramics. J. Adv. Ceram. 3, 177 (2014)
13.
go back to reference J.Q. Yi, M. Shen, S.S. Liu et al., Effects of PbO-B2O3 glass doping on the sintering temperature and piezoelectric properties of 0.35Pb(Ni1/3Nb2/3)O3–0.65Pb(Zr0.41Ti0.59)O3 ceramics. J. Electron. Mater. 44, 4846 (2015) J.Q. Yi, M. Shen, S.S. Liu et al., Effects of PbO-B2O3 glass doping on the sintering temperature and piezoelectric properties of 0.35Pb(Ni1/3Nb2/3)O3–0.65Pb(Zr0.41Ti0.59)O3 ceramics. J. Electron. Mater. 44, 4846 (2015)
14.
go back to reference F. Gao, C.J. Wang, X.C. Liu et al., Effect of tungsten on the structure and piezoelectric properties of PZN-PZT ceramics. Ceram. Int. 33, 1019 (2007) F. Gao, C.J. Wang, X.C. Liu et al., Effect of tungsten on the structure and piezoelectric properties of PZN-PZT ceramics. Ceram. Int. 33, 1019 (2007)
15.
go back to reference S.J. Yoon, A. Joshi, K. Uchino, Effect of additives on the electromechanical properties of Pb(Zr, Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc. 80, 1035 (2010) S.J. Yoon, A. Joshi, K. Uchino, Effect of additives on the electromechanical properties of Pb(Zr, Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc. 80, 1035 (2010)
16.
go back to reference Y. Hou, M. Zhu, F. Gao et al., Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 Ceramics. J. Am. Ceram. Soc. 87, 247 (2010) Y. Hou, M. Zhu, F. Gao et al., Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 Ceramics. J. Am. Ceram. Soc. 87, 247 (2010)
17.
go back to reference G.C. Li, L. Jiang, H.T. Pang et al., Synthesis of γ-MnO2, single-crystalline nanobelts. Mater. Lett. 61, 3319 (2007) G.C. Li, L. Jiang, H.T. Pang et al., Synthesis of γ-MnO2, single-crystalline nanobelts. Mater. Lett. 61, 3319 (2007)
18.
go back to reference C.H. Kim, Z. Akase, L. Zhang et al., The structure and ordering of ε-MnO2. J. Solid State Chem. 179, 753 (2006) C.H. Kim, Z. Akase, L. Zhang et al., The structure and ordering of ε-MnO2. J. Solid State Chem. 179, 753 (2006)
19.
go back to reference S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008) S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008)
20.
go back to reference A. Phakkhawan, P. Klangtakai, A. Chompoosor et al., A comparative study of MnO2 and composite MnO2–Ag nanostructures prepared by a hydrothermal technique on supercapacitor applications. J. Mater. Sci. 29, 9406 (2018) A. Phakkhawan, P. Klangtakai, A. Chompoosor et al., A comparative study of MnO2 and composite MnO2–Ag nanostructures prepared by a hydrothermal technique on supercapacitor applications. J. Mater. Sci. 29, 9406 (2018)
21.
go back to reference H. Yamaguchi, Behavior of electric-field-induced strain in PT–PZ–PMN ceramics. J. Am. Ceram. Soc. 82, 1459 (2010) H. Yamaguchi, Behavior of electric-field-induced strain in PT–PZ–PMN ceramics. J. Am. Ceram. Soc. 82, 1459 (2010)
22.
go back to reference P. Casey, A.P. McCoy, J. Bogan et al., In situ investigations into the mechanism of oxygen catalysis on ruthenium/manganese surfaces and the thermodynamic stability of Ru/Mn-based copper diffusion barrier layers. J. Phys. Chem. C 117, 16136 (2013) P. Casey, A.P. McCoy, J. Bogan et al., In situ investigations into the mechanism of oxygen catalysis on ruthenium/manganese surfaces and the thermodynamic stability of Ru/Mn-based copper diffusion barrier layers. J. Phys. Chem. C 117, 16136 (2013)
23.
go back to reference H.M. Xu, Z. Qu, S.J. Zhao et al., Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. J. Hazard. Mater. 299, 86 (2015) H.M. Xu, Z. Qu, S.J. Zhao et al., Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. J. Hazard. Mater. 299, 86 (2015)
24.
go back to reference M. Kim, Y. Hwang, J. Kim, Super-capacitive performance depending on different crystal structures of MnO2 in graphene/MnO2 composites for supercapacitors. J. Mater. Sci. 48, 7652 (2013) M. Kim, Y. Hwang, J. Kim, Super-capacitive performance depending on different crystal structures of MnO2 in graphene/MnO2 composites for supercapacitors. J. Mater. Sci. 48, 7652 (2013)
25.
go back to reference F.M. Zhang, Thermal analysis on ceramic dopants MnO2, Fe2O3 and Li2CO3. Piezoelectrics Acoustooptics 20, 358 (1998) F.M. Zhang, Thermal analysis on ceramic dopants MnO2, Fe2O3 and Li2CO3. Piezoelectrics Acoustooptics 20, 358 (1998)
26.
go back to reference V. Turchenko, A. Trukhanov, S. Trukhanov et al., Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9 (2019) V. Turchenko, A. Trukhanov, S. Trukhanov et al., Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9 (2019)
27.
go back to reference A.V. Trukhanov, M.A. Darwish, L.V. Panina et al., Features of crystal and magnetic structure of the BaFe12−xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522 (2019) A.V. Trukhanov, M.A. Darwish, L.V. Panina et al., Features of crystal and magnetic structure of the BaFe12−xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522 (2019)
28.
go back to reference S.V. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101, 513 (2005) S.V. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101, 513 (2005)
29.
go back to reference S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov et al., Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 83, 33 (2006) S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov et al., Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 83, 33 (2006)
30.
go back to reference N.A. Merino, B.P. Barbero, P. Eloy et al., La1−xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Appl. Surf. Sci. 253, 1489 (2006) N.A. Merino, B.P. Barbero, P. Eloy et al., La1−xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Appl. Surf. Sci. 253, 1489 (2006)
31.
go back to reference L. Jia, B.G. Fan, Y.X. Yao et al., Study on the elemental mercury adsorption characteristics and mechanism of iron-based modified biochar materials. Energy Fuel 32, 12554 (2018) L. Jia, B.G. Fan, Y.X. Yao et al., Study on the elemental mercury adsorption characteristics and mechanism of iron-based modified biochar materials. Energy Fuel 32, 12554 (2018)
32.
go back to reference Y. Yan, K.H. Cho, S. Priya, Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3–0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 94, 3953 (2011) Y. Yan, K.H. Cho, S. Priya, Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3–0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 94, 3953 (2011)
33.
go back to reference S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites. J. Mat. Chem. 13, 347 (2003) S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites. J. Mat. Chem. 13, 347 (2003)
34.
go back to reference V.D. Doroshev, V.A. Borodin, V.I. Kamenev et al., Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008) V.D. Doroshev, V.A. Borodin, V.I. Kamenev et al., Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)
35.
go back to reference K. Galliez, P. Deniard, C. Payen et al., Pair distribution function and density functional theory analyses of hydrogen trapping by γ-MnO2. Inorg. Chem. 54, 1194 (2015) K. Galliez, P. Deniard, C. Payen et al., Pair distribution function and density functional theory analyses of hydrogen trapping by γ-MnO2. Inorg. Chem. 54, 1194 (2015)
36.
go back to reference C. Franchini, R. Podloucky, J. Paier et al., Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128 (2007) C. Franchini, R. Podloucky, J. Paier et al., Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128 (2007)
37.
go back to reference B. Tiwari, R.N.P. Choudhary, Effect of Mn on structural and dielectric properties of Pb(Zr0.5Ti0.48)O3 electroceramic. IEEE Trans. Dielectr. Electr. Insul. 22, 3046 (2015) B. Tiwari, R.N.P. Choudhary, Effect of Mn on structural and dielectric properties of Pb(Zr0.5Ti0.48)O3 electroceramic. IEEE Trans. Dielectr. Electr. Insul. 22, 3046 (2015)
38.
go back to reference H.Y. Park, C.H. Nam, I.T. Seo et al., Effect of MnO2 on the piezoelectric properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 93, 2–537 (2010) H.Y. Park, C.H. Nam, I.T. Seo et al., Effect of MnO2 on the piezoelectric properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 93, 2–537 (2010)
39.
go back to reference I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak et al., Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ. J. Phys. 12, L155 (2000) I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak et al., Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ. J. Phys. 12, L155 (2000)
40.
go back to reference S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita et al., Comparative study of the magnetic and electrical properties of Pr1−xBaxMnO3-δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276 (2001) S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita et al., Comparative study of the magnetic and electrical properties of Pr1−xBaxMnO3-δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276 (2001)
41.
go back to reference H.X. Yan, F. Inam, G. Viola et al., The contribution of electrical conductivity, dielelctric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 01, 107 (2011) H.X. Yan, F. Inam, G. Viola et al., The contribution of electrical conductivity, dielelctric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 01, 107 (2011)
42.
go back to reference L.X. He, C.E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35, 2477 (2000) L.X. He, C.E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35, 2477 (2000)
43.
go back to reference R. Rai, S. Mishra, N.K. Singh, Effect of Fe and Mn doping at B-site of PLZT ceramics on dielectric properties. J. Alloys Compd. 487, 494 (2009) R. Rai, S. Mishra, N.K. Singh, Effect of Fe and Mn doping at B-site of PLZT ceramics on dielectric properties. J. Alloys Compd. 487, 494 (2009)
44.
go back to reference M.P. Zheng, Y.D. Hou, L.M. Chao et al., Piezoelectric KNN ceramic for energy harvesting from mechanochemically activated precursors. J. Mater. Sci. 29, 9582 (2018) M.P. Zheng, Y.D. Hou, L.M. Chao et al., Piezoelectric KNN ceramic for energy harvesting from mechanochemically activated precursors. J. Mater. Sci. 29, 9582 (2018)
45.
go back to reference G.H. Lee, Y.H. Kwon, J.H. Koh, Dielectric and piezoelectric properties of (1−x)(Bi, Na)TiO3−x(Bi, K)TiO3 lead-free ceramics for piezoelectric energy harvesters. Ceram. Int. 41, 7897 (2015) G.H. Lee, Y.H. Kwon, J.H. Koh, Dielectric and piezoelectric properties of (1−x)(Bi, Na)TiO3−x(Bi, K)TiO3 lead-free ceramics for piezoelectric energy harvesters. Ceram. Int. 41, 7897 (2015)
46.
go back to reference C.R. Bowen, H.A. Kim, P.M. Weaver et al., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2013) C.R. Bowen, H.A. Kim, P.M. Weaver et al., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2013)
47.
go back to reference Y. Jeong, K. Lee, J. Yoo, Piezoelectric and dielectric properties of Pb(Zn1/2W1/2)O3 substituted Pb(Mn1/3Nb2/3)O3–Pb(Zr0.48Ti0.52)O3 ceramics for energy harvesting device application. Ferroelectrics 409, 85 (2010) Y. Jeong, K. Lee, J. Yoo, Piezoelectric and dielectric properties of Pb(Zn1/2W1/2)O3 substituted Pb(Mn1/3Nb2/3)O3–Pb(Zr0.48Ti0.52)O3 ceramics for energy harvesting device application. Ferroelectrics 409, 85 (2010)
Metadata
Title
Effect of different MnO2 phases (β-, γ-, and ε-) on the microstructure and piezoelectric properties of Pb(Zr1/2Ti1/2)O3–Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 ceramics for energy harvesting
Authors
Junting Liu
Leilei Li
Zhennan Liu
Wanli Wu
Yujian Wang
Jie Xu
Feng Gao
Publication date
12-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02504-5

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue