Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2016

13-01-2016

Effect of Grain Size Distribution on Processing Maps for Isothermal Compression of Inconel 718 Superalloy

Authors: Jianguo Wang, Dong Liu, Yang Hu, Yanhui Yang, Xinglin Zhu

Published in: Journal of Materials Engineering and Performance | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cylindrical specimens of Inconel 718 alloys with three types of grain size distribution were used in the compression tests and processing maps were developed in 940-1040 °C and 0.001-10 s−1. The equiaxed fine grain is more effective on the dynamic softening behavior. For partial recrystallized microstructure, the peak efficiency of power dissipation occurs at the strain rate of 0.001 s−1, and the temperature range of 1000-1020 °C. In order to obtain homogeneous microstructure with fine grains, the partial recrystallized microstructure should be deformed at the low temperature and slow strain rates. The area fraction of instability domains decreases with strain increasing. The peak efficiency of power dissipation increases with average grain size decreasing. The efficiency of power dissipation will be stimulated by the precipitation of δ phase at slow strain rate of 0.001-0.01 s−1, and the initial deformed substructure at the strain rate of 0.1-1 s−1. Equiaxed fine grain is the optimum state for forging process and dynamic recrystallization. The grain size distribution has slight influence on the microstructure evolution at high temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.V.R.K. Prasad et al., Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892CrossRef Y.V.R.K. Prasad et al., Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892CrossRef
2.
go back to reference Y. Zhu et al., Characterization of Hot Deformation Behavior of As-Cast TC21 Titanium Alloy Using Processing Map, Mater. Sci. Eng. A, 2011, 528(3), p 1757–1763CrossRef Y. Zhu et al., Characterization of Hot Deformation Behavior of As-Cast TC21 Titanium Alloy Using Processing Map, Mater. Sci. Eng. A, 2011, 528(3), p 1757–1763CrossRef
3.
go back to reference I. Sen, R.S. Kottada, and U. Ramamurty, High Temperature Deformation Processing Maps for Boron Modified Ti-6Al-4V Alloys, Mater. Sci. Eng. A, 2010, 527(23), p 6157–6165CrossRef I. Sen, R.S. Kottada, and U. Ramamurty, High Temperature Deformation Processing Maps for Boron Modified Ti-6Al-4V Alloys, Mater. Sci. Eng. A, 2010, 527(23), p 6157–6165CrossRef
4.
go back to reference Q.L. Pan et al., Characterization of Hot Deformation Behavior of Ni-Base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378CrossRef Q.L. Pan et al., Characterization of Hot Deformation Behavior of Ni-Base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378CrossRef
5.
go back to reference Y. Liu et al., Effect of True Strains on Processing Map for Isothermal Compression of Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al Ni-Base Superalloy, J. Alloy. Compd., 2014, 612, p 56–63CrossRef Y. Liu et al., Effect of True Strains on Processing Map for Isothermal Compression of Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al Ni-Base Superalloy, J. Alloy. Compd., 2014, 612, p 56–63CrossRef
6.
go back to reference Y. Kong et al., Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloy. Compd., 2015, 622, p 738–744CrossRef Y. Kong et al., Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloy. Compd., 2015, 622, p 738–744CrossRef
7.
go back to reference A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite–Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454CrossRef A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite–Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454CrossRef
8.
go back to reference S.V.S.N. Murty, S. Torizuka, and K. Nagai, Microstructural Evolution During Simple Heavy Warm Compression of a Low Carbon Steel: Development of a Processing Map, Mater. Sci. Eng. A, 2005, 410-411, p 319–323CrossRef S.V.S.N. Murty, S. Torizuka, and K. Nagai, Microstructural Evolution During Simple Heavy Warm Compression of a Low Carbon Steel: Development of a Processing Map, Mater. Sci. Eng. A, 2005, 410-411, p 319–323CrossRef
9.
go back to reference T. Zhong et al., Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression, Mater. Sci. Eng. A, 2013, 559, p 773–781CrossRef T. Zhong et al., Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression, Mater. Sci. Eng. A, 2013, 559, p 773–781CrossRef
10.
go back to reference X. Shang et al., Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J. Alloy. Compd., 2015, 629, p 155–161CrossRef X. Shang et al., Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J. Alloy. Compd., 2015, 629, p 155–161CrossRef
11.
go back to reference M. Zhang et al., Characterization of Hot Deformation Behavior of a P/M Nickel-Base Superalloy Using Processing Map and Activation Energy, Mater. Sci. Eng. A, 2010, 527(24-25), p 6771–6779CrossRef M. Zhang et al., Characterization of Hot Deformation Behavior of a P/M Nickel-Base Superalloy Using Processing Map and Activation Energy, Mater. Sci. Eng. A, 2010, 527(24-25), p 6771–6779CrossRef
12.
go back to reference M.C. Somani et al., Mechanical Processing and Microstructural Control in Hot Working of Hot Isostatically Pressed P/M IN-100 Superalloy, Mater. Sci. Eng. A, 1998, 245(1), p 88–99CrossRef M.C. Somani et al., Mechanical Processing and Microstructural Control in Hot Working of Hot Isostatically Pressed P/M IN-100 Superalloy, Mater. Sci. Eng. A, 1998, 245(1), p 88–99CrossRef
13.
go back to reference P.K. Sagar, Effect of Alloying Elements and Microstructure on the Processing Parameters of α2 Aluminide Alloys, Mater. Sci. Eng. A, 2006, 434(1-2), p 259–268CrossRef P.K. Sagar, Effect of Alloying Elements and Microstructure on the Processing Parameters of α2 Aluminide Alloys, Mater. Sci. Eng. A, 2006, 434(1-2), p 259–268CrossRef
14.
go back to reference C.Y. Wang et al., Processing Maps For Hot Working of ZK60 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 464(1-2), p 52–58CrossRef C.Y. Wang et al., Processing Maps For Hot Working of ZK60 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 464(1-2), p 52–58CrossRef
15.
go back to reference Y. Wang et al., Characterization of Dynamic Recrystallisation in As-Homogenized Mg-Zn-Y-Zr Alloy Using Processing Map, J. Mater. Sci., 2006, 41(12), p 3603–3608CrossRef Y. Wang et al., Characterization of Dynamic Recrystallisation in As-Homogenized Mg-Zn-Y-Zr Alloy Using Processing Map, J. Mater. Sci., 2006, 41(12), p 3603–3608CrossRef
16.
go back to reference Y. Wang et al., Hot Working Characteristics and Dynamic Recrystallization of Delta-Processed Superalloy 718, J. Alloy. Compd., 2009, 474(1-2), p 341–346CrossRef Y. Wang et al., Hot Working Characteristics and Dynamic Recrystallization of Delta-Processed Superalloy 718, J. Alloy. Compd., 2009, 474(1-2), p 341–346CrossRef
17.
go back to reference W.S. Lee et al., Effects of Temperature and Strain Rate on Deformation Behaviour of Inconel 718 Alloy, Mater. Chem. Phys., 2011, 129(3), p 832–839CrossRef W.S. Lee et al., Effects of Temperature and Strain Rate on Deformation Behaviour of Inconel 718 Alloy, Mater. Chem. Phys., 2011, 129(3), p 832–839CrossRef
18.
go back to reference A. Rao, M. Srinivas, and D.S. Sarma, Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2004, 383(2), p 201–212CrossRef A. Rao, M. Srinivas, and D.S. Sarma, Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2004, 383(2), p 201–212CrossRef
19.
go back to reference N. Srinivasan and Y.V.R.K. Prasad, Microstructural Control in Hot Working of IN-718 Superalloy Using Processing Map, Metall. Mater. Trans. A, 1994, 25(10), p 2275–2284CrossRef N. Srinivasan and Y.V.R.K. Prasad, Microstructural Control in Hot Working of IN-718 Superalloy Using Processing Map, Metall. Mater. Trans. A, 1994, 25(10), p 2275–2284CrossRef
20.
go back to reference S.V.S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of IN718, Mater. Sci. Eng. A, 1999, 267(1), p 159–161CrossRef S.V.S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of IN718, Mater. Sci. Eng. A, 1999, 267(1), p 159–161CrossRef
21.
go back to reference S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82CrossRef S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82CrossRef
22.
go back to reference F. Sui et al., Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211(3), p 433–440CrossRef F. Sui et al., Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211(3), p 433–440CrossRef
23.
go back to reference K. Wang et al., Effect of the δ Phase on the Deformation Behavior in Isothermal Compression of Superalloy GH4169, Mater. Sci. Eng. A, 2011, 528(13-14), p 4723–4731CrossRef K. Wang et al., Effect of the δ Phase on the Deformation Behavior in Isothermal Compression of Superalloy GH4169, Mater. Sci. Eng. A, 2011, 528(13-14), p 4723–4731CrossRef
24.
go back to reference D. Wen et al., Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 591, p 183–192CrossRef D. Wen et al., Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 591, p 183–192CrossRef
25.
go back to reference D. Cai et al., Dissolution Kinetics of δ Phase and its Influence on the Notch Sensitivity of Inconel 718, Mater. Charact., 2007, 58(3), p 220–225CrossRef D. Cai et al., Dissolution Kinetics of δ Phase and its Influence on the Notch Sensitivity of Inconel 718, Mater. Charact., 2007, 58(3), p 220–225CrossRef
26.
go back to reference P. Zhang et al., Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef P. Zhang et al., Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef
27.
go back to reference Q. Guo et al., Nucleation Mechanisms of Dynamic Recrystallization in Inconel 625 Superalloy Deformed with Different Strain Rates, Rare Met., 2012, 31(3), p 215–220CrossRef Q. Guo et al., Nucleation Mechanisms of Dynamic Recrystallization in Inconel 625 Superalloy Deformed with Different Strain Rates, Rare Met., 2012, 31(3), p 215–220CrossRef
28.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, Characterization of Deformation Instability in Modified 9Cr-1Mo Steel During Thermo-Mechanical Processing, Mater. Des., 2011, 32(2), p 716–722CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Characterization of Deformation Instability in Modified 9Cr-1Mo Steel During Thermo-Mechanical Processing, Mater. Des., 2011, 32(2), p 716–722CrossRef
29.
go back to reference D. Ohadi, M.H. Parsa, and H. Mirzadeh, Development of Dynamic Recrystallization Maps Based on the Initial Grain Size, Mater. Sci. Eng. A, 2013, 565, p 90–95CrossRef D. Ohadi, M.H. Parsa, and H. Mirzadeh, Development of Dynamic Recrystallization Maps Based on the Initial Grain Size, Mater. Sci. Eng. A, 2013, 565, p 90–95CrossRef
30.
go back to reference H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, Mater. Sci. Eng. A, 2013, 569, p 54–60CrossRef H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, Mater. Sci. Eng. A, 2013, 569, p 54–60CrossRef
31.
go back to reference M. Elwahabi et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612CrossRef M. Elwahabi et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612CrossRef
32.
go back to reference R.P. Guest and S. Tin, The Dynamic and Metadynamic Recrystallisation of the in 718, in Superalloys 718, 625, 706 and Derivatives 2005, TMS, Warrendale, 2005, p 625–706 R.P. Guest and S. Tin, The Dynamic and Metadynamic Recrystallisation of the in 718, in Superalloys 718, 625, 706 and Derivatives 2005, TMS, Warrendale, 2005, p 625–706
33.
go back to reference B. Marty et al., Recrystallization and Work-Hardening Prediction During Forging Process of Inconel 718, Superalloys, 1997, 718, p 625–706 B. Marty et al., Recrystallization and Work-Hardening Prediction During Forging Process of Inconel 718, Superalloys, 1997, 718, p 625–706
34.
go back to reference K. Wang, M.Q. Li, and C. Li, δ and Austenite Phases Evolution and Model in Solution Treatment of Superalloy GH4169, Mater. Sci. Technol., 2013, 29(3), p 346–350CrossRef K. Wang, M.Q. Li, and C. Li, δ and Austenite Phases Evolution and Model in Solution Treatment of Superalloy GH4169, Mater. Sci. Technol., 2013, 29(3), p 346–350CrossRef
Metadata
Title
Effect of Grain Size Distribution on Processing Maps for Isothermal Compression of Inconel 718 Superalloy
Authors
Jianguo Wang
Dong Liu
Yang Hu
Yanhui Yang
Xinglin Zhu
Publication date
13-01-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1887-9

Other articles of this Issue 2/2016

Journal of Materials Engineering and Performance 2/2016 Go to the issue

Premium Partners