Skip to main content
Top
Published in: Cellulose 11/2018

28-08-2018 | Original Paper

Effect of high residual lignin on the properties of cellulose nanofibrils/films

Authors: Yuan Chen, Dongbin Fan, Yanming Han, Shaoyi Lyu, Yun Lu, Gaiyun Li, Feng Jiang, Siqun Wang

Published in: Cellulose | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work focused on an eco-friendly and facile method to produce lignocellulose nanofibrils (LCNFs) by the one-step grinding of original poplar wood. An array of detailed characterizations were performed to elucidate the effect of the residual lignin (22.1, 14.1, 8.2, 2.0, 0.4 and 0.2%) on the properties of LCNFs and its films. The LCNFs were rather sensitive to ultraviolet absorption, low-viscosity and anti-degradation properties. Morphological observations suggested that lignin particles homogeneously attach to the surface of cellulose nanofibrils for higher-residual-lignin samples. The results of chemical structures analysis demonstrated an effect of residual lignin amounts on the CrI. Further, the LCNF nanofilms exhibited enhanced hydrophobicity and mechanical properties. Overall, LCNFs are a renewable material with low environmental impact, low cost and they are being manufactured at a largescale. They also offer potential for a wide range of applications, such as ultraviolet protection, anti-degradation, and valuable reinforcing composite materials.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023CrossRef
go back to reference Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chem Sus Chem 3:1227–1235CrossRef Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chem Sus Chem 3:1227–1235CrossRef
go back to reference Campbell MM, Sederoff RR (1996) Variation inlignin amount and composition (Mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13CrossRef Campbell MM, Sederoff RR (1996) Variation inlignin amount and composition (Mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13CrossRef
go back to reference Chen Y, Fan D, Han Y et al (2017) Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose 24:5431–5442CrossRef Chen Y, Fan D, Han Y et al (2017) Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose 24:5431–5442CrossRef
go back to reference Chinga-Carrasco G, Syverud K (2012) On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 7:192CrossRef Chinga-Carrasco G, Syverud K (2012) On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 7:192CrossRef
go back to reference Culhaoglu T, Pollet B, Melin C et al (2011) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Agric Food Chem 59:10129–10135CrossRef Culhaoglu T, Pollet B, Melin C et al (2011) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Agric Food Chem 59:10129–10135CrossRef
go back to reference Donaldson LA (2001) Lignification and lignin topochemistry: an ultrastructural view. Phytochemistry 57:859–873CrossRef Donaldson LA (2001) Lignification and lignin topochemistry: an ultrastructural view. Phytochemistry 57:859–873CrossRef
go back to reference Feng X, Yang Z, Chmely S et al (2017b) Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: mechanical reinforcement and thermal stabilization. Carbohyd Polym 169:272–281CrossRef Feng X, Yang Z, Chmely S et al (2017b) Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: mechanical reinforcement and thermal stabilization. Carbohyd Polym 169:272–281CrossRef
go back to reference Ferrer A, Filpponen I, Rodríguez A et al (2012a) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRef Ferrer A, Filpponen I, Rodríguez A et al (2012a) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRef
go back to reference Ferrer A, Quintana E, Filpponen I et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193CrossRef Ferrer A, Quintana E, Filpponen I et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193CrossRef
go back to reference Gierlinger N, Schmidt GM (2008) In situ FT-IR microscopic study on enzymatic treamtment of poplar wood cross-sections. Biomacromol 9:2194–2201CrossRef Gierlinger N, Schmidt GM (2008) In situ FT-IR microscopic study on enzymatic treamtment of poplar wood cross-sections. Biomacromol 9:2194–2201CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef
go back to reference Himmel ME, Ding S, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding S, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
go back to reference Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20:807–818CrossRef Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20:807–818CrossRef
go back to reference Ji Z, Ma JF, Zhang ZH et al (2013) Distribution of lignin and cellulose in compression wood tracheids of pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crop Prod 47:212–217CrossRef Ji Z, Ma JF, Zhang ZH et al (2013) Distribution of lignin and cellulose in compression wood tracheids of pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crop Prod 47:212–217CrossRef
go back to reference Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRef Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRef
go back to reference Jiang F, Hsieh YL (2015a) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRef Jiang F, Hsieh YL (2015a) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRef
go back to reference Jiang F, Hsieh YL (2015b) Holocellulose nanocrystals: amphiphilicity, oil/water emulsion, and self-assembly. Biomacromolecules 16:1433–1441CrossRef Jiang F, Hsieh YL (2015b) Holocellulose nanocrystals: amphiphilicity, oil/water emulsion, and self-assembly. Biomacromolecules 16:1433–1441CrossRef
go back to reference Jiang F, Kondo T, Hsieh YL (2016) Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled strcutures. ACS Sustain Chem Eng 4:1697–1706CrossRef Jiang F, Kondo T, Hsieh YL (2016) Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled strcutures. ACS Sustain Chem Eng 4:1697–1706CrossRef
go back to reference Mueller S, Weder C, Foster EJ (2013) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4:907–915CrossRef Mueller S, Weder C, Foster EJ (2013) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4:907–915CrossRef
go back to reference Nair SS, Yan N (2015a) Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Carbohydr Polym 134:258–266CrossRef Nair SS, Yan N (2015a) Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Carbohydr Polym 134:258–266CrossRef
go back to reference Nair SS, Yan N (2015b) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150CrossRef Nair SS, Yan N (2015b) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150CrossRef
go back to reference Nair SS, Kuo P, Chen H et al (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crop Prod 100:208–217CrossRef Nair SS, Kuo P, Chen H et al (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crop Prod 100:208–217CrossRef
go back to reference Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
go back to reference Rojo E, Peresin M, Sampson W et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866CrossRef Rojo E, Peresin M, Sampson W et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-Mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-Mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
go back to reference Segal L, Creely JJ, Martin AH et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AH et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Spence KL, Venditti RA, Habibi Y et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Cellulose 101:835–848CrossRef Spence KL, Venditti RA, Habibi Y et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Cellulose 101:835–848CrossRef
go back to reference Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRef Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRef
go back to reference Tang J, Lee MF, Zhang W et al (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060CrossRef Tang J, Lee MF, Zhang W et al (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060CrossRef
go back to reference Teixeira EDM, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606CrossRef Teixeira EDM, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606CrossRef
go back to reference Velásquez-Cock J, Gañán P, Posada P et al (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of the resulting films. Ind Crop Prod 85:1–10CrossRef Velásquez-Cock J, Gañán P, Posada P et al (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of the resulting films. Ind Crop Prod 85:1–10CrossRef
go back to reference Visanko M, Liimatainen H, Sirviö JA et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer. Biomacromolecules 15:2769–2775CrossRef Visanko M, Liimatainen H, Sirviö JA et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer. Biomacromolecules 15:2769–2775CrossRef
go back to reference Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
go back to reference Wang FK, Akimov YA, Khoo EH et al (2015) π–π interactions mediated self-assembly of gold nanoparticles into single crystalline superlattices in solution. RSC Adv 5:90766–90771CrossRef Wang FK, Akimov YA, Khoo EH et al (2015) π–π interactions mediated self-assembly of gold nanoparticles into single crystalline superlattices in solution. RSC Adv 5:90766–90771CrossRef
go back to reference Wu ZN, Liu JL, Li YC et al (2015) Self-assembly of nanoclusters into mono-, few-, and multilayered sheets via dipole-induced asymmetric van der Waals attraction. ACS Nano 9:6315–6323CrossRef Wu ZN, Liu JL, Li YC et al (2015) Self-assembly of nanoclusters into mono-, few-, and multilayered sheets via dipole-induced asymmetric van der Waals attraction. ACS Nano 9:6315–6323CrossRef
go back to reference Xiong F, Han Y, Wang S et al (2017) Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain Chem Eng 5:2273–2281CrossRef Xiong F, Han Y, Wang S et al (2017) Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain Chem Eng 5:2273–2281CrossRef
go back to reference Yu ZY, Jameel H, Chang HM et al (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102:9083–9089CrossRef Yu ZY, Jameel H, Chang HM et al (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102:9083–9089CrossRef
go back to reference Zheng YH, Rosa L, Thai T et al (2015) Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity. J Mater Chem A 3:240–249CrossRef Zheng YH, Rosa L, Thai T et al (2015) Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity. J Mater Chem A 3:240–249CrossRef
Metadata
Title
Effect of high residual lignin on the properties of cellulose nanofibrils/films
Authors
Yuan Chen
Dongbin Fan
Yanming Han
Shaoyi Lyu
Yun Lu
Gaiyun Li
Feng Jiang
Siqun Wang
Publication date
28-08-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 11/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2006-x

Other articles of this Issue 11/2018

Cellulose 11/2018 Go to the issue