Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 4/2024

12-03-2022 | Review Article

Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A”

Authors: Fereshteh Falah, Alireza Vasiee, Mohammad Ramezani, Farideh Tabatabaee-Yazdi, Seyed Ali Mortazavi, Abolghasem Danesh

Published in: Biomass Conversion and Biorefinery | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cyclosporin A (CyA) is a secondary metabolite mainly produced by Tolypocladium inflatum. CyA is a non-polar cyclic polypeptide that is widely used in medicine. Its importance is due to its immunosuppressive role making it useful for the treatment of autoimmune diseases, although to some extent, it showed anti-fungal and anti-parasitic properties. In this review, we discuss the biosynthetic pathway, fermentative production (increasing production efficiency by cells, appropriate, and new fermentation process), downstream processing (efficient extraction and purification), and pharmacological activities of CyA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514CrossRef Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514CrossRef
3.
go back to reference Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRef Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRef
4.
go back to reference Ghanbari T, Seid Mohammadkhani H, Babaeizad V (2014) Identification of some secondary metabolites produced by four Penicillium species. Mycologia Iranica 1:107–113 Ghanbari T, Seid Mohammadkhani H, Babaeizad V (2014) Identification of some secondary metabolites produced by four Penicillium species. Mycologia Iranica 1:107–113
5.
go back to reference Dreyfuss M, Härri E, Hea H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin a and C. Eur J App Microbiol Biotechnol 3:125–33CrossRef Dreyfuss M, Härri E, Hea H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin a and C. Eur J App Microbiol Biotechnol 3:125–33CrossRef
6.
go back to reference Sallam LA, El-Refai A-MH, Hamdi A-HA, El-Minofi HA, Abd-Elsalam IS (2005) Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J General App Microbiol 51:143–9CrossRef Sallam LA, El-Refai A-MH, Hamdi A-HA, El-Minofi HA, Abd-Elsalam IS (2005) Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J General App Microbiol 51:143–9CrossRef
7.
go back to reference Anjum T, Azam A, Irum W (2012) Production of cyclosporine A by submerged fermentation from a local isolate of Penicillium fellutanum. Indian J Pharm Sci 74:372CrossRef Anjum T, Azam A, Irum W (2012) Production of cyclosporine A by submerged fermentation from a local isolate of Penicillium fellutanum. Indian J Pharm Sci 74:372CrossRef
8.
go back to reference Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193CrossRef Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193CrossRef
9.
go back to reference Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Van Peteghem C et al (2011) Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build Environ 46:945–954CrossRef Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Van Peteghem C et al (2011) Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build Environ 46:945–954CrossRef
10.
go back to reference Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193CrossRef Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193CrossRef
11.
go back to reference Diamanti AP, Rosado M, Germano V, Scarsella M, Giorda E, Podestà E et al (2011) Reversion of resistance to immunosuppressive agents in three patients with psoriatic arthritis by cyclosporine A: Modulation of P-glycoprotein function. Clin Immunol 138:9–13CrossRef Diamanti AP, Rosado M, Germano V, Scarsella M, Giorda E, Podestà E et al (2011) Reversion of resistance to immunosuppressive agents in three patients with psoriatic arthritis by cyclosporine A: Modulation of P-glycoprotein function. Clin Immunol 138:9–13CrossRef
13.
go back to reference Survase SA, Kagliwal LD, Annapure US, Singhal RS (2011) Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29:418–435CrossRef Survase SA, Kagliwal LD, Annapure US, Singhal RS (2011) Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29:418–435CrossRef
14.
go back to reference Tanseer S, Anjum T (2011) Modification of c and n sources for enhanced production of cyclosporin’a’by Aspergillus Terreus. Braz J Microbiol 42:1374–1383CrossRef Tanseer S, Anjum T (2011) Modification of c and n sources for enhanced production of cyclosporin’a’by Aspergillus Terreus. Braz J Microbiol 42:1374–1383CrossRef
15.
go back to reference Abdel-Fattah Y, Enshasy HE, Anwar M, Omar H, Abolmagd E (2007) Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture. J Microbiol Biotechnol 17:1930–1936 Abdel-Fattah Y, Enshasy HE, Anwar M, Omar H, Abolmagd E (2007) Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture. J Microbiol Biotechnol 17:1930–1936
16.
go back to reference Balaraman K, Mathew N (2006) Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J Med Res 123:525 Balaraman K, Mathew N (2006) Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J Med Res 123:525
17.
go back to reference Agathos S, Marshall J, Moraiti C, Parekh R, Madhosingh C (1986) Physiological and genetic factors for process development of cyclosporine fermentations. J Ind Microbiol 1:39–48CrossRef Agathos S, Marshall J, Moraiti C, Parekh R, Madhosingh C (1986) Physiological and genetic factors for process development of cyclosporine fermentations. J Ind Microbiol 1:39–48CrossRef
18.
go back to reference Nisha A, Meignanalakshmi S, Ramasamy K (2008) Comparative effect of amino acids in the production of cyclosporine A by solid and submerged fermentations. Biotechnology 7:205–208CrossRef Nisha A, Meignanalakshmi S, Ramasamy K (2008) Comparative effect of amino acids in the production of cyclosporine A by solid and submerged fermentations. Biotechnology 7:205–208CrossRef
19.
go back to reference Berton P, Mishra MK, Choudhary H, Myerson AS, Rogers RD (2019) Solubility studies of cyclosporine using ionic liquids. ACS Omega 4:7938–7943CrossRef Berton P, Mishra MK, Choudhary H, Myerson AS, Rogers RD (2019) Solubility studies of cyclosporine using ionic liquids. ACS Omega 4:7938–7943CrossRef
20.
go back to reference Amarouche N, Boudesocque L, Sayagh C, Giraud M, McGarrity J, Butte A et al (2013) Purification of a modified cyclosporine A by co-current centrifugal partition chromatography: process development and intensification. J Chromatogr A 1311:72–78CrossRef Amarouche N, Boudesocque L, Sayagh C, Giraud M, McGarrity J, Butte A et al (2013) Purification of a modified cyclosporine A by co-current centrifugal partition chromatography: process development and intensification. J Chromatogr A 1311:72–78CrossRef
21.
go back to reference Survase SA, Bacigalupi C, Annapure US, Singhal RS (2009) Use of coconut coir fibers as an inert solid support for production of cyclosporin A. Biotechnol Bioprocess Eng 14:769–774CrossRef Survase SA, Bacigalupi C, Annapure US, Singhal RS (2009) Use of coconut coir fibers as an inert solid support for production of cyclosporin A. Biotechnol Bioprocess Eng 14:769–774CrossRef
22.
go back to reference Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289CrossRef Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289CrossRef
23.
go back to reference Liddicoat AM, Lavelle EC (2019) Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 163:472–480CrossRef Liddicoat AM, Lavelle EC (2019) Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 163:472–480CrossRef
24.
go back to reference Borel JF, Feurer C, Magnee C, Stähelin H (1977) Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32:1017 Borel JF, Feurer C, Magnee C, Stähelin H (1977) Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32:1017
25.
go back to reference Řeháček Z, De-xiu Z (1991) The biochemistry of cyclosporin formation: a review. Process Biochem 26:157–166CrossRef Řeháček Z, De-xiu Z (1991) The biochemistry of cyclosporin formation: a review. Process Biochem 26:157–166CrossRef
26.
go back to reference Wenger R (1985) Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production. U.S. Patent No. 4,554,351 Wenger R (1985) Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production. U.S. Patent No. 4,554,351
27.
go back to reference Price DA, Eng H, Farley KA, Goetz GH, Huang Y, Jiao Z et al (2017) Comparative pharmacokinetic profile of cyclosporine (CsA) with a decapeptide and a linear analogue. Org Biomol Chem 15:2501–2506CrossRef Price DA, Eng H, Farley KA, Goetz GH, Huang Y, Jiao Z et al (2017) Comparative pharmacokinetic profile of cyclosporine (CsA) with a decapeptide and a linear analogue. Org Biomol Chem 15:2501–2506CrossRef
28.
go back to reference Fliri HG, Wenger RM (2019) Cyclosporine: synthetic studies, structure-activity relationships, biosynthesis and mode of action. De Gruyter, Biochemistry of Peptide Antibiotics, pp 245–288 Fliri HG, Wenger RM (2019) Cyclosporine: synthetic studies, structure-activity relationships, biosynthesis and mode of action. De Gruyter, Biochemistry of Peptide Antibiotics, pp 245–288
29.
go back to reference Spitzfaden C, Braun W, Wider G, Widmer H, Wüthrich K (1994) Determination of the NMR solution structure of the cyclophilin A-cyclosporin A complex. J Biomol NMR 4:463–482CrossRef Spitzfaden C, Braun W, Wider G, Widmer H, Wüthrich K (1994) Determination of the NMR solution structure of the cyclophilin A-cyclosporin A complex. J Biomol NMR 4:463–482CrossRef
30.
go back to reference Mikol V, Kallen J, Pflügl G, Walkinshaw MD (1993) X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2·1 Å resolution. J Mol Biol 234:1119–1130CrossRef Mikol V, Kallen J, Pflügl G, Walkinshaw MD (1993) X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2·1 Å resolution. J Mol Biol 234:1119–1130CrossRef
31.
go back to reference Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G et al (1994) Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 330:1841–1845CrossRef Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G et al (1994) Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 330:1841–1845CrossRef
32.
go back to reference Rosenthaler J, Keller HP (1990) Comment on cyclosporine assay techniques: an attempt for recommendations. 22(3):1160–1165 Rosenthaler J, Keller HP (1990) Comment on cyclosporine assay techniques: an attempt for recommendations. 22(3):1160–1165
33.
go back to reference Ismailos G, Reppas C, Dressman JB, Macheras P (1991) Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol 43:287–289CrossRef Ismailos G, Reppas C, Dressman JB, Macheras P (1991) Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol 43:287–289CrossRef
34.
go back to reference Hasumi H, Nishikawa T, Ohtani H (1994) Effect of temperature on molecular structure of cyclosporin A. Biochem Mol Biol Int 34:505–511 Hasumi H, Nishikawa T, Ohtani H (1994) Effect of temperature on molecular structure of cyclosporin A. Biochem Mol Biol Int 34:505–511
35.
go back to reference Czogalla A (2009) Oral cyclosporine A-the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett 14:139–152CrossRef Czogalla A (2009) Oral cyclosporine A-the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett 14:139–152CrossRef
36.
go back to reference Penkler LJ, Müller RH, Runge SA, Ravelli V, inventors; Pharmatec International SRL, assignee (2003) Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. United States patent US 6,551,619 Penkler LJ, Müller RH, Runge SA, Ravelli V, inventors; Pharmatec International SRL, assignee (2003) Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. United States patent US 6,551,619
37.
go back to reference Lawen A, Zocher R (1990) Cyclosporin synthetase The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–60CrossRef Lawen A, Zocher R (1990) Cyclosporin synthetase The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–60CrossRef
38.
go back to reference Lawen A, Traber R (1993) Substrate specificities of cyclosporin synthetase and peptolide SDZ 214–103 synthetase Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem 268:20452–65CrossRef Lawen A, Traber R (1993) Substrate specificities of cyclosporin synthetase and peptolide SDZ 214–103 synthetase Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem 268:20452–65CrossRef
39.
go back to reference Weber G, Leitner E (1994) Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr Genet 26:461–467CrossRef Weber G, Leitner E (1994) Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr Genet 26:461–467CrossRef
40.
go back to reference Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. Springer, Industrial Applications, pp 129–155 Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. Springer, Industrial Applications, pp 129–155
41.
go back to reference Velkov T, Lawen A (2003) Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors—cyclosporin synthetase as a complex example. Biotechnol Annu Rev 9:151–197CrossRef Velkov T, Lawen A (2003) Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors—cyclosporin synthetase as a complex example. Biotechnol Annu Rev 9:151–197CrossRef
42.
go back to reference Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C (2018) Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. MBio 9:e01211-e1218CrossRef Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C (2018) Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. MBio 9:e01211-e1218CrossRef
43.
go back to reference Velkov T, Horne J, Scanlon MJ, Capuano B, Yuriev E, Lawen A (2011) Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporin synthetase. Chem Biol 18:464–475CrossRef Velkov T, Horne J, Scanlon MJ, Capuano B, Yuriev E, Lawen A (2011) Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporin synthetase. Chem Biol 18:464–475CrossRef
44.
go back to reference Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE et al (2013) The genome of Tolypocladium inflatum: evolution, organization and expression of the cyclosporin biosynthetic gene cluster. PLoS genetics 9:e1003496CrossRef Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE et al (2013) The genome of Tolypocladium inflatum: evolution, organization and expression of the cyclosporin biosynthetic gene cluster. PLoS genetics 9:e1003496CrossRef
45.
go back to reference Di Salvo ML, Florio R, Paiardini A, Vivoli M, D’Aguanno S, Contestabile R (2013) Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys 529:55–65CrossRef Di Salvo ML, Florio R, Paiardini A, Vivoli M, D’Aguanno S, Contestabile R (2013) Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys 529:55–65CrossRef
46.
go back to reference Hoppert M, Gentzsch C, Schörgendorfer K (2001) Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch Microbiol 176:285–293CrossRef Hoppert M, Gentzsch C, Schörgendorfer K (2001) Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch Microbiol 176:285–293CrossRef
47.
go back to reference Lazarova T, Weng Z (2003) Cyclosporin A analogues: recent advances. Expert Opinion on Therapeutic Patents 13(9):1327–32 Lazarova T, Weng Z (2003) Cyclosporin A analogues: recent advances. Expert Opinion on Therapeutic Patents 13(9):1327–32
48.
go back to reference Traber R, Hofmann H, Kobel H (1989) Cyclosporins-new analogues by precursor directed biosynthesis. J Antibiot 42:591–597CrossRef Traber R, Hofmann H, Kobel H (1989) Cyclosporins-new analogues by precursor directed biosynthesis. J Antibiot 42:591–597CrossRef
49.
go back to reference Loor F, Tiberghien F, Wenandy T, Didier A, Traber R (2002) Cyclosporins: structure− activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J Med Chem 45:4598–4612CrossRef Loor F, Tiberghien F, Wenandy T, Didier A, Traber R (2002) Cyclosporins: structure− activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J Med Chem 45:4598–4612CrossRef
50.
go back to reference Mutter M, Wenger R, Guichou JF, Keller M, Ruckle T, Woehr T, inventors; Debiopharm SA, assignee (2004) Cyclosporin derivatives and method for the production of said derivatives. United States patent US 6,790,935 Mutter M, Wenger R, Guichou JF, Keller M, Ruckle T, Woehr T, inventors; Debiopharm SA, assignee (2004) Cyclosporin derivatives and method for the production of said derivatives. United States patent US 6,790,935 
51.
go back to reference Liu Y, Ruan H, Li Y, Sun G, Liu X, He W et al (2020) Potent and specific inhibition of NTCP-mediated HBV/HDV infection and substrate transporting by a novel, oral-available cyclosporine A analogue. J Med Chem 64:543–565CrossRef Liu Y, Ruan H, Li Y, Sun G, Liu X, He W et al (2020) Potent and specific inhibition of NTCP-mediated HBV/HDV infection and substrate transporting by a novel, oral-available cyclosporine A analogue. J Med Chem 64:543–565CrossRef
52.
go back to reference Irum W, Anjum T (2012) Production enhancement of Cyclosporin ‘A’by Aspergillus terreus through mutation. Afr J Biotech 11:1736–1743 Irum W, Anjum T (2012) Production enhancement of Cyclosporin ‘A’by Aspergillus terreus through mutation. Afr J Biotech 11:1736–1743
53.
go back to reference Wagner H, Kreher B, Jurcic K (1988) In vitro stimulation of human granulocytes and lymphocytes by pico-and femtogram quantities of cytostatic agents. Arzneimittelforschung 38:273–275 Wagner H, Kreher B, Jurcic K (1988) In vitro stimulation of human granulocytes and lymphocytes by pico-and femtogram quantities of cytostatic agents. Arzneimittelforschung 38:273–275
54.
go back to reference Wagner H, Kreher B, Arzneimittel-forschung JK (1988) In vitro stimulation of human granulocytes and lymphocytes by pico- and femtogram quantities of cytostatic agents. 38(2):273–275  Wagner H, Kreher B, Arzneimittel-forschung JK (1988) In vitro stimulation of human granulocytes and lymphocytes by pico- and femtogram quantities of cytostatic agents. 38(2):273–275
55.
go back to reference Zheng Z-W, Li J, Chen H, He J-L, Chen Q-W, Zhang J-H et al (2020) Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors 13:1–14CrossRef Zheng Z-W, Li J, Chen H, He J-L, Chen Q-W, Zhang J-H et al (2020) Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors 13:1–14CrossRef
56.
go back to reference Dawson J, Hurtenbach U, MacKenzie A (1996) Cyclosporin A inhibits the in vivo production of interleukin-1β and tumour necrosis factor α, but not interleukin-6, by a T-cell-independent mechanism. Cytokine 8:882–888CrossRef Dawson J, Hurtenbach U, MacKenzie A (1996) Cyclosporin A inhibits the in vivo production of interleukin-1β and tumour necrosis factor α, but not interleukin-6, by a T-cell-independent mechanism. Cytokine 8:882–888CrossRef
57.
go back to reference Saitoh O, Matsuse R, Sugi K, Nakagawa K, Uchida K, Maemura K et al (1997) Cyclosporine A inhibits interleukin-8 production in a human colon epithelial cell line (HT-29). J Gastroenterol 32:605–610CrossRef Saitoh O, Matsuse R, Sugi K, Nakagawa K, Uchida K, Maemura K et al (1997) Cyclosporine A inhibits interleukin-8 production in a human colon epithelial cell line (HT-29). J Gastroenterol 32:605–610CrossRef
58.
go back to reference Kitahara K, Kawai S (2007) Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis. Curr Opin Rheumatol 19:238–245CrossRef Kitahara K, Kawai S (2007) Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis. Curr Opin Rheumatol 19:238–245CrossRef
59.
go back to reference Amor KT, Ryan C, Menter A (2010) The use of cyclosporine in dermatology: part I. J Am Acad Dermatol 63:925–946CrossRef Amor KT, Ryan C, Menter A (2010) The use of cyclosporine in dermatology: part I. J Am Acad Dermatol 63:925–946CrossRef
60.
go back to reference Lee J (2013) Cyclophilin A as a new therapeutic target for hepatitis C virus-induced hepatocellular carcinoma. Korean JPhys Pharmacol 17:375–383CrossRef Lee J (2013) Cyclophilin A as a new therapeutic target for hepatitis C virus-induced hepatocellular carcinoma. Korean JPhys Pharmacol 17:375–383CrossRef
61.
go back to reference Franke EK, Luban J (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag–cyclophilin A interaction. Virology 222:279–282CrossRef Franke EK, Luban J (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag–cyclophilin A interaction. Virology 222:279–282CrossRef
62.
go back to reference Rao SN (2006) Treatment of herpes simplex virus stromal keratitis unresponsive to topical prednisolone 1% with topical cyclosporine 0.05%. Am J Ophthalmol 141:771–2CrossRef Rao SN (2006) Treatment of herpes simplex virus stromal keratitis unresponsive to topical prednisolone 1% with topical cyclosporine 0.05%. Am J Ophthalmol 141:771–2CrossRef
64.
go back to reference Lee J (2010) Use of antioxidants to prevent cyclosporine a toxicity. Toxicol Res 26:163–170CrossRef Lee J (2010) Use of antioxidants to prevent cyclosporine a toxicity. Toxicol Res 26:163–170CrossRef
65.
go back to reference Dogra S, Mahajan R, Narang T, Handa S (2017) Systemic cyclosporine treatment in severe childhood psoriasis: a retrospective chart review. J Dermatol Treat 28:18–20CrossRef Dogra S, Mahajan R, Narang T, Handa S (2017) Systemic cyclosporine treatment in severe childhood psoriasis: a retrospective chart review. J Dermatol Treat 28:18–20CrossRef
66.
go back to reference Lai VWY, Chen G, Sinclair R (2021) Impact of cyclosporin treatment on health-related quality of life of patients with alopecia areata. J Dermatol Treat 32:250–257CrossRef Lai VWY, Chen G, Sinclair R (2021) Impact of cyclosporin treatment on health-related quality of life of patients with alopecia areata. J Dermatol Treat 32:250–257CrossRef
67.
go back to reference St.John J, Ratushny V, Liu KJ, Bach DQ, Badri O, Gracey LE et al (2017) Successful use of cyclosporin A for Stevens-Johnson syndrome and toxic epidermal necrolysis in three children. Pediatric Dermatol 34:540–6CrossRef St.John J, Ratushny V, Liu KJ, Bach DQ, Badri O, Gracey LE et al (2017) Successful use of cyclosporin A for Stevens-Johnson syndrome and toxic epidermal necrolysis in three children. Pediatric Dermatol 34:540–6CrossRef
68.
go back to reference Nebbioso M, Alisi L, Giovannetti F, Armentano M, Lambiase A (2019) Eye drop emulsion containing 01% cyclosporin (1 mg/mL) for the treatment of severe vernal keratoconjunctivitis: an evidence-based review and place in therapy. Clin Ophthalmol (Auckland, NZ) 13:1147CrossRef Nebbioso M, Alisi L, Giovannetti F, Armentano M, Lambiase A (2019) Eye drop emulsion containing 01% cyclosporin (1 mg/mL) for the treatment of severe vernal keratoconjunctivitis: an evidence-based review and place in therapy. Clin Ophthalmol (Auckland, NZ) 13:1147CrossRef
69.
go back to reference Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F et al (2017) Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol 66:685–692CrossRef Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F et al (2017) Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol 66:685–692CrossRef
70.
go back to reference El Enshasy H, Fattah YA, Atta A, Anwar M, Omar H, Magd S et al (2008) Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor. J Microbiol Biotechnol 18:128–134 El Enshasy H, Fattah YA, Atta A, Anwar M, Omar H, Magd S et al (2008) Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor. J Microbiol Biotechnol 18:128–134
71.
go back to reference Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719CrossRef Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719CrossRef
72.
go back to reference Nakajima H, Hamasaki T, Nishimura K, Kondo T, Kimura Y, Udagawa S-i et al (1988) Isolation of 2-acetylamino-3-hydroxy-4-methyloct-6-enoic acid, a derivative of the “C9-amino acid” residue of cyclosporins, produced by the fungus Neocosmospora vasinfecta EF Smith. Agric Biol Chem 52:1621–3 Nakajima H, Hamasaki T, Nishimura K, Kondo T, Kimura Y, Udagawa S-i et al (1988) Isolation of 2-acetylamino-3-hydroxy-4-methyloct-6-enoic acid, a derivative of the “C9-amino acid” residue of cyclosporins, produced by the fungus Neocosmospora vasinfecta EF Smith. Agric Biol Chem 52:1621–3
73.
go back to reference Sallam LA, El-Refai A-MH, Hamdy A-HA, El-Minofi HA (2003) Abdel-Salam IS. Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. J General App Microbiol 49:321–8CrossRef Sallam LA, El-Refai A-MH, Hamdy A-HA, El-Minofi HA (2003) Abdel-Salam IS. Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. J General App Microbiol 49:321–8CrossRef
74.
go back to reference Sawai K, Okuno T, Terada Y, Harada Y, Sawamura K, Sasaki H et al (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228 Sawai K, Okuno T, Terada Y, Harada Y, Sawamura K, Sasaki H et al (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228
75.
go back to reference Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P (1997) Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol 63:1739–1743CrossRef Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P (1997) Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol 63:1739–1743CrossRef
76.
go back to reference Azam A, Anjum T, Irum W (2012) Trichoderma harzianum: a new fungal source for the production of cyclosporin. Bangladesh J Pharmacol 7:33–35CrossRef Azam A, Anjum T, Irum W (2012) Trichoderma harzianum: a new fungal source for the production of cyclosporin. Bangladesh J Pharmacol 7:33–35CrossRef
77.
go back to reference Ismaiel AA, El-Sayed E-SA, Mahmoud AA (2010) Some optimal culture conditions for production of cyclosporin a by Fusarium roseum. Brazil J Microbiol 41:1112–23CrossRef Ismaiel AA, El-Sayed E-SA, Mahmoud AA (2010) Some optimal culture conditions for production of cyclosporin a by Fusarium roseum. Brazil J Microbiol 41:1112–23CrossRef
78.
go back to reference Survase SA, Annapure US, Singhal RS (2009) Statistical optimization of cyclosporin A production on a semi-synthetic medium using Tolypocladium inflatum MTCC 557. Global J Biotechnol Biochem 4:184–192 Survase SA, Annapure US, Singhal RS (2009) Statistical optimization of cyclosporin A production on a semi-synthetic medium using Tolypocladium inflatum MTCC 557. Global J Biotechnol Biochem 4:184–192
79.
go back to reference Zocher R, Madry N, Peeters H, Kleinkauf H (1984) Biosynthesis of cyclosporin A. Phytochemistry 23:549–551CrossRef Zocher R, Madry N, Peeters H, Kleinkauf H (1984) Biosynthesis of cyclosporin A. Phytochemistry 23:549–551CrossRef
80.
go back to reference Lee M-J, Lee H-N, Han K-B, Kim E-S (2008) Spore inoculum optimization to maximize cyclosporin a production in Tolypocladium niveum. J Microbiol Biotechnol 18:913–917 Lee M-J, Lee H-N, Han K-B, Kim E-S (2008) Spore inoculum optimization to maximize cyclosporin a production in Tolypocladium niveum. J Microbiol Biotechnol 18:913–917
81.
go back to reference Lee J, Agathos S (1989) Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotech Lett 11:77–82CrossRef Lee J, Agathos S (1989) Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotech Lett 11:77–82CrossRef
82.
go back to reference Margaritis A, Chahal PS (1989) Development of a fructose based medium for biosynthesis of cyclosporin-A by Beauveria nivea. Biotech Lett 11:765–768CrossRef Margaritis A, Chahal PS (1989) Development of a fructose based medium for biosynthesis of cyclosporin-A by Beauveria nivea. Biotech Lett 11:765–768CrossRef
83.
go back to reference Isaac C, Jones A, Pickard M (1990) Production of cyclosporins by Tolypocladium niveum strains. Antimicrob Agents Chemother 34:121–127CrossRef Isaac C, Jones A, Pickard M (1990) Production of cyclosporins by Tolypocladium niveum strains. Antimicrob Agents Chemother 34:121–127CrossRef
84.
go back to reference Kannan N, Kalaichelvan P (2007) Production of immunosuppressant drug cyclosporin A from Tolypocladium inflatum in presence of L-valine. Allelopath J 19:549–553 Kannan N, Kalaichelvan P (2007) Production of immunosuppressant drug cyclosporin A from Tolypocladium inflatum in presence of L-valine. Allelopath J 19:549–553
85.
go back to reference Dong H, Jiang J, Yan T, Zhao J (2011) Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation. Archives of Biological Sciences 63:907–914CrossRef Dong H, Jiang J, Yan T, Zhao J (2011) Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation. Archives of Biological Sciences 63:907–914CrossRef
86.
go back to reference Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRef Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRef
87.
go back to reference El-Sayed E, Ahmed A, Al-Hagar O (2020) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol 128:1427–1439CrossRef El-Sayed E, Ahmed A, Al-Hagar O (2020) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol 128:1427–1439CrossRef
88.
go back to reference Rigo E, Ninow JL, Di Luccio M, Oliveira JV, Polloni AE, Remonatto D et al (2010) Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Science and Technology 43:1132–1137CrossRef Rigo E, Ninow JL, Di Luccio M, Oliveira JV, Polloni AE, Remonatto D et al (2010) Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Science and Technology 43:1132–1137CrossRef
89.
go back to reference Sekar C, Balaraman K (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng 18:293–296CrossRef Sekar C, Balaraman K (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng 18:293–296CrossRef
90.
go back to reference Murthy MR, Mohan E, Sadhukhan A (1999) Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280CrossRef Murthy MR, Mohan E, Sadhukhan A (1999) Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280CrossRef
91.
go back to reference Sharmila K, Thillaimaharani K, Logesh A, Sathishkumar A, Kalaiselvam M (2012) Production of cyclosporin A by saprophytic filamentous fungus Fusarium oxysporum. Int J Pharm Pharm Sci 4:149–153 Sharmila K, Thillaimaharani K, Logesh A, Sathishkumar A, Kalaiselvam M (2012) Production of cyclosporin A by saprophytic filamentous fungus Fusarium oxysporum. Int J Pharm Pharm Sci 4:149–153
92.
go back to reference Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRef Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRef
93.
go back to reference Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523CrossRef Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523CrossRef
94.
go back to reference Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:958CrossRef Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:958CrossRef
95.
go back to reference Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9CrossRef Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9CrossRef
96.
go back to reference El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2019) Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. App Microbiol Biotechnol 103:8923–35CrossRef El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2019) Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. App Microbiol Biotechnol 103:8923–35CrossRef
97.
go back to reference Ismaiel A, Ahmed A, El-Sayed E (2015) Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated P enicillium roqueforti. J Appl Microbiol 119:112–126CrossRef Ismaiel A, Ahmed A, El-Sayed E (2015) Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated P enicillium roqueforti. J Appl Microbiol 119:112–126CrossRef
98.
go back to reference El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2020) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess and Biosystems Engineering 43:997–1008CrossRef El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2020) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess and Biosystems Engineering 43:997–1008CrossRef
99.
go back to reference Foster B, Coutts R, Pasutto F, Dossetor J (1983) Production of cyclosporin A by carrageenan-immobilized Tolypocladium inflatum in an airlift reactor with external loop. Biotech Lett 5:693–696CrossRef Foster B, Coutts R, Pasutto F, Dossetor J (1983) Production of cyclosporin A by carrageenan-immobilized Tolypocladium inflatum in an airlift reactor with external loop. Biotech Lett 5:693–696CrossRef
100.
go back to reference Chun G-T, Agathos S (1989) Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporine production. J Biotechnol 9:237–254CrossRef Chun G-T, Agathos S (1989) Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporine production. J Biotechnol 9:237–254CrossRef
101.
go back to reference Survase SA, Annapure US, Singhal RS (2010) Gellan gum as immobilization matrix for production of cyclosporin A. J Microbiol Biotechnol 20:1086–1091CrossRef Survase SA, Annapure US, Singhal RS (2010) Gellan gum as immobilization matrix for production of cyclosporin A. J Microbiol Biotechnol 20:1086–1091CrossRef
102.
go back to reference Şeker Ş, Beyenal H, Ayhan F, Tanyolaç A (1998) Production of microbial rennin from Mucor miehei in a continuously fed fermenter. Enzyme Microb Technol 23:469–474CrossRef Şeker Ş, Beyenal H, Ayhan F, Tanyolaç A (1998) Production of microbial rennin from Mucor miehei in a continuously fed fermenter. Enzyme Microb Technol 23:469–474CrossRef
103.
go back to reference El-Sayed E, Ahmed A, Abdelhakim H (2020) A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. J Appl Microbiol 128:747–762CrossRef El-Sayed E, Ahmed A, Abdelhakim H (2020) A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. J Appl Microbiol 128:747–762CrossRef
104.
go back to reference El-Sayed E-SR, Zaki AG, Ahmed AS, Ismaiel AA (2020) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. App Microbiol Biotechnol 104:6991–7003CrossRef El-Sayed E-SR, Zaki AG, Ahmed AS, Ismaiel AA (2020) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. App Microbiol Biotechnol 104:6991–7003CrossRef
105.
go back to reference Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125CrossRef Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125CrossRef
106.
go back to reference Faisal RM (2013) The application of the mutagen nitrous acid to improve the free living nitrogen fixation ability of Azotobacter spp. Rafidain J Sci 24:44–54CrossRef Faisal RM (2013) The application of the mutagen nitrous acid to improve the free living nitrogen fixation ability of Azotobacter spp. Rafidain J Sci 24:44–54CrossRef
107.
go back to reference Kim JW, Lee KM, Choi BT, Lee JM, Sung NK, Min KB, inventors; Chong Kun Dang Corp, assignee (1999) Process for manufacturing cyclosporin a by highly productive fusant strain. United States patent US 5,856,141 Kim JW, Lee KM, Choi BT, Lee JM, Sung NK, Min KB, inventors; Chong Kun Dang Corp, assignee (1999) Process for manufacturing cyclosporin a by highly productive fusant strain. United States patent US 5,856,141
108.
go back to reference Domratcheva A, Zhgun A, Novak N, Dzhavakhiya V (2018) The influence of chemical mutagenesis on the properties of the cyclosporine a high-producer strain Tolypocladium inflatum VKM F-3630D. Appl Biochem Microbiol 54:53–57CrossRef Domratcheva A, Zhgun A, Novak N, Dzhavakhiya V (2018) The influence of chemical mutagenesis on the properties of the cyclosporine a high-producer strain Tolypocladium inflatum VKM F-3630D. Appl Biochem Microbiol 54:53–57CrossRef
109.
go back to reference Cirigliano AM, Cabrera GM (2014) Differentiation of cyclosporin A from isocyclosporin A by liquid chromatography/electrospray ionization mass spectrometry with post-column addition of divalent metal salt. Rapid Commun Mass Spectrom 28:465–470CrossRef Cirigliano AM, Cabrera GM (2014) Differentiation of cyclosporin A from isocyclosporin A by liquid chromatography/electrospray ionization mass spectrometry with post-column addition of divalent metal salt. Rapid Commun Mass Spectrom 28:465–470CrossRef
110.
go back to reference Pagans E, Font X, Sánchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179–186CrossRef Pagans E, Font X, Sánchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179–186CrossRef
111.
go back to reference Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from trichoderma harzianum and trichoderma longibrachiatum. Bull Chem Soc Ethiop 17(2):185–190 Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from trichoderma harzianum and trichoderma longibrachiatum. Bull Chem Soc Ethiop 17(2):185–190
112.
go back to reference Jeleń H (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267CrossRef Jeleń H (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267CrossRef
113.
go back to reference Balaraman K, Mathew N, inventors; National Research Development Corp UK, assignee (1997) Process for the preparation of cyclosporin a from tolypocladium species. United States patent US 5,656,459 Balaraman K, Mathew N, inventors; National Research Development Corp UK, assignee (1997) Process for the preparation of cyclosporin a from tolypocladium species. United States patent US 5,656,459
114.
go back to reference Lam KB, Le Blanc JY, Campbell JL (2020) Separating isomers, conformers, and analogues of cyclosporin using differential mobility spectroscopy, mass spectrometry, and hydrogen–deuterium exchange. Anal Chem 92:11053–11061CrossRef Lam KB, Le Blanc JY, Campbell JL (2020) Separating isomers, conformers, and analogues of cyclosporin using differential mobility spectroscopy, mass spectrometry, and hydrogen–deuterium exchange. Anal Chem 92:11053–11061CrossRef
115.
go back to reference Hyung S-J, Feng X, Che Y, Stroh JG, Shapiro M (2014) Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry. Anal Bioanal Chem 406:5785–5794CrossRef Hyung S-J, Feng X, Che Y, Stroh JG, Shapiro M (2014) Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry. Anal Bioanal Chem 406:5785–5794CrossRef
116.
go back to reference Johnas S, Dittrich B, Meents A, Messerschmidt M, Weckert E (2009) Charge-density study on cyclosporine A. Acta Crystallogr D Biol Crystallogr 65:284–293CrossRef Johnas S, Dittrich B, Meents A, Messerschmidt M, Weckert E (2009) Charge-density study on cyclosporine A. Acta Crystallogr D Biol Crystallogr 65:284–293CrossRef
117.
go back to reference Alvarez AJ, Singh A, Myerson AS (2011) Crystallization of cyclosporine in a multistage continuous MSMPR crystallizer. Cryst Growth Des 11:4392–4400CrossRef Alvarez AJ, Singh A, Myerson AS (2011) Crystallization of cyclosporine in a multistage continuous MSMPR crystallizer. Cryst Growth Des 11:4392–4400CrossRef
118.
go back to reference Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12:5701–5707CrossRef Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12:5701–5707CrossRef
Metadata
Title
Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A”
Authors
Fereshteh Falah
Alireza Vasiee
Mohammad Ramezani
Farideh Tabatabaee-Yazdi
Seyed Ali Mortazavi
Abolghasem Danesh
Publication date
12-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 4/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02533-x

Other articles of this Issue 4/2024

Biomass Conversion and Biorefinery 4/2024 Go to the issue