Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2014

01-07-2014

Effect of Inclusion Size and Distribution on the Corrosion Behavior of Medical-Device Grade Nitinol Tubing

Authors: Markus Wohlschlögel, Rainer Steegmüller, Andreas Schüßler

Published in: Journal of Materials Engineering and Performance | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonmetallic inclusions in Nitinol, such as carbides (TiC) and intermetallic oxides (Ti4Ni2O x ), are known to be triggers for fatigue failure of Nitinol medical devices. These mechanically brittle inclusions are introduced during the melting process. As a result of hot and cold working in the production of Nitinol tubing inclusions are fractionalized due to the mechanical deformation imposed. While the role of inclusions regarding Nitinol fatigue performance has been studied extensively in the past, their effect on Nitinol corrosion behavior was investigated in only a limited number of studies. The focus of the present work was to understand the effect of inclusion size and distribution on the corrosion behavior of medical-device grade Nitinol tubing made from three different ingot sources during different manufacturing stages: (i) for the initial stage (hollow: round bar with centric hole), (ii) after hot drawing, and (iii) after the final drawing step (final tubing dimensions: outer diameter 0.3 mm, wall thickness 0.1 mm). For one ingot source, two different material qualities were investigated. Potentiodynamic polarization tests were performed for electropolished samples of the above-mentioned stages. Results indicate that inclusion size rather than inclusion quantity affects the susceptibility of electropolished Nitinol to pitting corrosion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRef T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160CrossRef
2.
go back to reference M. Reinoehl, D. Bradley, R. Bouthot, and J. Proft, The Influence of Melt Practice on Final Fatigue Properties of Superelastic NiTi Wires, Proceedings of the SMST 2000, SMST, Fremont, CA, 2001, p 397–403 M. Reinoehl, D. Bradley, R. Bouthot, and J. Proft, The Influence of Melt Practice on Final Fatigue Properties of Superelastic NiTi Wires, Proceedings of the SMST 2000, SMST, Fremont, CA, 2001, p 397–403
3.
go back to reference M. Rahim, J. Frenzel, M. Frotscher, J. Pfezing-Mücklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61, p 3667–3686CrossRef M. Rahim, J. Frenzel, M. Frotscher, J. Pfezing-Mücklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61, p 3667–3686CrossRef
4.
go back to reference ASTM, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM F2063-12, ASTM, West Conshohocken, 2012 ASTM, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM F2063-12, ASTM, West Conshohocken, 2012
5.
go back to reference A. Toro, F. Zhou, M.H. Wu, W. Van Geertruyden, and W.Z. Misiolek, Characterization of Non-metallic Inclusions in Superelastic NiTi Tubes, J. Mater. Eng. Perform., 2009, 18, p 448–458CrossRef A. Toro, F. Zhou, M.H. Wu, W. Van Geertruyden, and W.Z. Misiolek, Characterization of Non-metallic Inclusions in Superelastic NiTi Tubes, J. Mater. Eng. Perform., 2009, 18, p 448–458CrossRef
6.
go back to reference S. Shabalovskaya, J. Anderegg, G. Rondelli, and J.-P. Xiong, The Effect of Surface Particulates on the Corrosion Resistance of Nitinol Wire, Proceedings of the SMST 2003, SMST, Menlo Park, CA, 2004, p 399–408 S. Shabalovskaya, J. Anderegg, G. Rondelli, and J.-P. Xiong, The Effect of Surface Particulates on the Corrosion Resistance of Nitinol Wire, Proceedings of the SMST 2003, SMST, Menlo Park, CA, 2004, p 399–408
7.
go back to reference M. Wohlschlögel, R. Steegmüller, and A. Schüßler, Potentiodynamic Polarization Study on Electropolished Nitinol Vascular Implants, J. Biomed. Mater. Res. B, 2012, 100B, p 2231–2238CrossRef M. Wohlschlögel, R. Steegmüller, and A. Schüßler, Potentiodynamic Polarization Study on Electropolished Nitinol Vascular Implants, J. Biomed. Mater. Res. B, 2012, 100B, p 2231–2238CrossRef
8.
go back to reference A.R. Pelton, S.M. Russel, and J. DiCello, The Physical Metallurgy of Nitinol for Medical Applications, J. Met., 2003, 55, p 33–37 A.R. Pelton, S.M. Russel, and J. DiCello, The Physical Metallurgy of Nitinol for Medical Applications, J. Met., 2003, 55, p 33–37
9.
go back to reference ASTM, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM F2129-08, ASTM, West Conshohocken, 2008 ASTM, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM F2129-08, ASTM, West Conshohocken, 2008
10.
go back to reference C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodeau, and D.L. Piron, Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance, J. Biomed. Mater. Res. (Appl. Biomater.), 1998, 43, p 433–440CrossRef C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodeau, and D.L. Piron, Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance, J. Biomed. Mater. Res. (Appl. Biomater.), 1998, 43, p 433–440CrossRef
11.
go back to reference W.S. Hwang, K.J. Kim, and W.C. Seo, Pitting Corrosion of TiNi Shape Memory Alloy in Deaerated Chloride Solutions, 13th ICC 1996, 1996, p 381 W.S. Hwang, K.J. Kim, and W.C. Seo, Pitting Corrosion of TiNi Shape Memory Alloy in Deaerated Chloride Solutions, 13th ICC 1996, 1996, p 381
Metadata
Title
Effect of Inclusion Size and Distribution on the Corrosion Behavior of Medical-Device Grade Nitinol Tubing
Authors
Markus Wohlschlögel
Rainer Steegmüller
Andreas Schüßler
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0996-6

Other articles of this Issue 7/2014

Journal of Materials Engineering and Performance 7/2014 Go to the issue

EditorialNotes

Editorial: SMST 2013

Premium Partners