Skip to main content
Top
Published in: Cellulose 4/2013

01-08-2013 | Original Paper

Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds

Authors: Baoquan Jia, Yutao Li, Bin Yang, Di Xiao, Shengnan Zhang, A. Varada Rajulu, Tetsuo Kondo, Lina Zhang, Jinping Zhou

Published in: Cellulose | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To investigate the potential application of microcrystal cellulose (MCC) and cellulose whisker (CW) in the electrospun vascular tissue scaffolds, cellulose acetate (CA) and cellulose composite scaffolds containing MCC and CW were electrospun from CA solutions and deacetylation. Structure and morphology of MCC, CW and the fibrous composite scaffolds were investigated using FT-IR, SEM, TEM and AFM. The wettability of the scaffolds was evaluated by water contact angle analysis. The effect of MCC and CW on the biocompatibility of the scaffolds for vascular smooth muscle cells (VSMC) was assayed by MTT test, fluorescent imaging and SEM. The biocomposite scaffolds displayed multi-scaled structure and morphology. The scaffolds containing MCC and CW simultaneously exhibited significantly higher cell viability compared to those with only MCC or CW and no filler. Cell viability and morphology within the scaffolds become better with increasing content of MCC and CW. The composite scaffolds with both micro- and nano-scale organization could mimic the native extracellular matrix more closely, and further produce synergistic enhancement on VSMC viability, adhesion and proliferation. This study provides the potential applications of renewable cellulose-based particulates in biomedical field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRef
go back to reference Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L et al (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Controlled Release 164:291–298CrossRef Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L et al (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Controlled Release 164:291–298CrossRef
go back to reference Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef
go back to reference Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH (2012) Bioinspired nanofibers support chondrogenesis for articular cartilage repair. PANS 109:10012–10017CrossRef Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH (2012) Bioinspired nanofibers support chondrogenesis for articular cartilage repair. PANS 109:10012–10017CrossRef
go back to reference Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793CrossRef Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793CrossRef
go back to reference Deitzel J, Kleinmeyer J, Harris D, Beck Tan N (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272CrossRef Deitzel J, Kleinmeyer J, Harris D, Beck Tan N (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272CrossRef
go back to reference Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 02:1241006–1241017CrossRef Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 02:1241006–1241017CrossRef
go back to reference Du J, Hsieh YL (2009) Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 16:247–260CrossRef Du J, Hsieh YL (2009) Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 16:247–260CrossRef
go back to reference Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504CrossRef Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504CrossRef
go back to reference Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715CrossRef Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715CrossRef
go back to reference Eldessouki M, Buschle-Diller G, Gowayed Y (2011) Poly (l-lysine)/microcrystalline cellulose biocomposites for porous scaffolds. Polym Compos 32:1937–1944CrossRef Eldessouki M, Buschle-Diller G, Gowayed Y (2011) Poly (l-lysine)/microcrystalline cellulose biocomposites for porous scaffolds. Polym Compos 32:1937–1944CrossRef
go back to reference Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
go back to reference Gouma P, Ramachandran K, Firat M, Connolly M, Zuckermann R, Balaszi C et al (2010) Novel bioceramics for bone implants. In: Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics, vol II. Wiley, Hoboken, pp 35–44 Gouma P, Ramachandran K, Firat M, Connolly M, Zuckermann R, Balaszi C et al (2010) Novel bioceramics for bone implants. In: Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics, vol II. Wiley, Hoboken, pp 35–44
go back to reference Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef
go back to reference Ilharco L, de Barros RB (2000) Aggregation of pseudoisocyanine iodide in cellulose acetate films: structural characterization by FTIR. Langmuir 16:9331–9337CrossRef Ilharco L, de Barros RB (2000) Aggregation of pseudoisocyanine iodide in cellulose acetate films: structural characterization by FTIR. Langmuir 16:9331–9337CrossRef
go back to reference Kakisis JD, Liapis CD, Breuer C, Sumpio BE (2005) Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg 41:349–354CrossRef Kakisis JD, Liapis CD, Breuer C, Sumpio BE (2005) Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg 41:349–354CrossRef
go back to reference Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J III, Langer R et al (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79A:522–532CrossRef Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J III, Langer R et al (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79A:522–532CrossRef
go back to reference Kim SJ, Jang DH, Park WH, Min BM (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51:1320–1327CrossRef Kim SJ, Jang DH, Park WH, Min BM (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51:1320–1327CrossRef
go back to reference Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
go back to reference Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ (2011) Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials 32:1549–1559CrossRef Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ (2011) Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials 32:1549–1559CrossRef
go back to reference Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood karft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6:4271–4281 Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood karft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6:4271–4281
go back to reference Li J, Li Y, Liu X, Zhang J, Zhang Y (2013) Strategy to introduce an hydroxyapatite-keratin nanocomposite into a fibrous membrane for bone tissue engineering. J Mater Chem B 1:432–437CrossRef Li J, Li Y, Liu X, Zhang J, Zhang Y (2013) Strategy to introduce an hydroxyapatite-keratin nanocomposite into a fibrous membrane for bone tissue engineering. J Mater Chem B 1:432–437CrossRef
go back to reference Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40:2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40:2119–2129CrossRef
go back to reference Luo C, Li L, Shi X, Yang G, Ding S, Zhi W et al (2012) Modulating cellular behaviors through surface nanoroughness. J Mater Chem 22:15654–15664CrossRef Luo C, Li L, Shi X, Yang G, Ding S, Zhi W et al (2012) Modulating cellular behaviors through surface nanoroughness. J Mater Chem 22:15654–15664CrossRef
go back to reference Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158CrossRef Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158CrossRef
go back to reference Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4:1373–1379CrossRef Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4:1373–1379CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963CrossRef Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963CrossRef
go back to reference Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59CrossRef Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59CrossRef
go back to reference Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y et al (2011) Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736CrossRef Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y et al (2011) Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736CrossRef
go back to reference Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598CrossRef Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598CrossRef
go back to reference Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 50:10991–10995CrossRef Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 50:10991–10995CrossRef
go back to reference Son WK, Youk JH, Lee TS, Park WH (2004a) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci, Part B: Polym Phys 42:5–11CrossRef Son WK, Youk JH, Lee TS, Park WH (2004a) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci, Part B: Polym Phys 42:5–11CrossRef
go back to reference Son WK, Youk JH, Lee TS, Park WH (2004b) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637CrossRef Son WK, Youk JH, Lee TS, Park WH (2004b) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637CrossRef
go back to reference Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918CrossRef Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918CrossRef
go back to reference Thibault RA, Mikos AG, Kasper FK (2013) Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater 2:13–24CrossRef Thibault RA, Mikos AG, Kasper FK (2013) Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater 2:13–24CrossRef
go back to reference Truong YB, Glattauer V, Briggs KL, Zappe S, Ramshaw JAM (2012) Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials 33:9198–9204CrossRef Truong YB, Glattauer V, Briggs KL, Zappe S, Ramshaw JAM (2012) Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials 33:9198–9204CrossRef
go back to reference Tuzlakoglu K, Bolgen N, Salgado A, Gomes M, Piskin E, Reis R (2005) Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104CrossRef Tuzlakoglu K, Bolgen N, Salgado A, Gomes M, Piskin E, Reis R (2005) Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104CrossRef
go back to reference Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef
go back to reference Wang S, Castro R, An X, Song C, Luo Y, Shen M et al (2012) Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22:23357–23367CrossRef Wang S, Castro R, An X, Song C, Luo Y, Shen M et al (2012) Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22:23357–23367CrossRef
go back to reference Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromolecules 8:2969–2975CrossRef Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromolecules 8:2969–2975CrossRef
go back to reference Wu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH (2011) Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym 26:565–577CrossRef Wu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH (2011) Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym 26:565–577CrossRef
go back to reference Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31:5072–5082CrossRef Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31:5072–5082CrossRef
go back to reference Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef
go back to reference Zhu H, Ji J, Shen J (2004) Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold. Biomacromolecules 5:1933–1939CrossRef Zhu H, Ji J, Shen J (2004) Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold. Biomacromolecules 5:1933–1939CrossRef
go back to reference Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801CrossRef Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801CrossRef
Metadata
Title
Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds
Authors
Baoquan Jia
Yutao Li
Bin Yang
Di Xiao
Shengnan Zhang
A. Varada Rajulu
Tetsuo Kondo
Lina Zhang
Jinping Zhou
Publication date
01-08-2013
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2013
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9952-0

Other articles of this Issue 4/2013

Cellulose 4/2013 Go to the issue