Skip to main content
Erschienen in: Cellulose 5/2012

01.10.2012 | Original Paper

Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility

verfasst von: Katia Rodríguez, Paul Gatenholm, Scott Renneckar

Erschienen in: Cellulose | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrospinning of cellulose acetate (CA) was studied in relation to factors of solvent composition, polymer concentration, and flow rate to elucidate how the processing parameters impact electrospun CA structure. Fibrous cellulose-based mats were produced from electrospinning cellulose acetate (CA, Mn = 30,000, DS = 2.45) in acetone, acetone/isopropanol (2:1), and acetone/dimethylacetamide (DMAc) (2:1) solutions. The effect of CA concentration and flow rate was evaluated in acetone/DMAc (2:1) solution. The morphology of electrospun CA mats was impacted by solvent system, polymer concentration, and solution flow rate. Fibers produced from acetone and the mixture of acetone/isopropanol (2:1) exhibited a ribbon structure, while acetone/DMAc (2:1) system produced the common cylindrical fiber shape. It was determined that the electrospinning of 17 % CA solution in acetone/DMAc (2:1, w/w) produced fibers with an average fiber diameter in the submicron range and the lowest size distribution among the solvents tested. The solution flow rate had a power law relationship of 0.26 with the CA fiber size for 17 % CA in acetone/DMAc (2:1). Solvent composition and flow rate also impacted the stability of the network structure of the electrospun fibers. Only samples from acetone/DMAc (2:1) at solution flow rates equal or higher than 1 mL/h produced fibrous meshes that were able to preserve their original network structure after deacetylation. These samples after regeneration showed no residual DMAc and exhibited no cytotoxic effects on mammalian cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629. doi:10.1021/bm060057z CrossRef Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629. doi:10.​1021/​bm060057z CrossRef
Zurück zum Zitat Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498–2504. doi:10.1021/bm100684k CrossRef Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498–2504. doi:10.​1021/​bm100684k CrossRef
Zurück zum Zitat Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13(11):3173–3180. doi:10.1039/c1gc15930e CrossRef Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13(11):3173–3180. doi:10.​1039/​c1gc15930e CrossRef
Zurück zum Zitat Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4–5):759–762CrossRef Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4–5):759–762CrossRef
Zurück zum Zitat Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res, Part A 76A(2):431–438. doi:10.1002/jbm.a.30570 CrossRef Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res, Part A 76A(2):431–438. doi:10.​1002/​jbm.​a.​30570 CrossRef
Zurück zum Zitat Kim C-W, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci, Part B: Polym Phys 43(13):1673–1683. doi:10.1002/polb.20475 CrossRef Kim C-W, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci, Part B: Polym Phys 43(13):1673–1683. doi:10.​1002/​polb.​20475 CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393CrossRef
Zurück zum Zitat Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621. doi:10.1002/jbm.10167 CrossRef Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621. doi:10.​1002/​jbm.​10167 CrossRef
Zurück zum Zitat Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ (2011) Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126. doi:10.1002/bit.22914 CrossRef Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ (2011) Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126. doi:10.​1002/​bit.​22914 CrossRef
Zurück zum Zitat Liu H, Tang C (2006) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39(1):65–72CrossRef Liu H, Tang C (2006) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39(1):65–72CrossRef
Zurück zum Zitat Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membrane Sci 319(1–2):23–28CrossRef Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membrane Sci 319(1–2):23–28CrossRef
Zurück zum Zitat McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, Loboa EG (2010) In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Engin Part C 16(5):1095–1105. doi:10.1089/ten.tec.2009.0753 CrossRef McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, Loboa EG (2010) In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Engin Part C 16(5):1095–1105. doi:10.​1089/​ten.​tec.​2009.​0753 CrossRef
Zurück zum Zitat Miyamoto T, Takahashi S-i, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRef Miyamoto T, Takahashi S-i, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRef
Zurück zum Zitat Munir MM, Suryamas AB, Iskandar F, Okuyama K (2009) Scaling law on particle-to-fiber formation during electrospinning. Polymer 50(20):4935–4943CrossRef Munir MM, Suryamas AB, Iskandar F, Okuyama K (2009) Scaling law on particle-to-fiber formation during electrospinning. Polymer 50(20):4935–4943CrossRef
Zurück zum Zitat Phachamud T, Phiriyawirut M (2011) In vitro cytotoxicity and degradability tests of gallic acid-loaded cellulose acetate electrospun fiber. Res J Pharm, Biol Chem Sci 2(3):85–98 Phachamud T, Phiriyawirut M (2011) In vitro cytotoxicity and degradability tests of gallic acid-loaded cellulose acetate electrospun fiber. Res J Pharm, Biol Chem Sci 2(3):85–98
Zurück zum Zitat Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose (Dordrecht, Neth) 17(2):223–230. doi:10.1007/s10570-009-9386-x Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose (Dordrecht, Neth) 17(2):223–230. doi:10.​1007/​s10570-009-9386-x
Zurück zum Zitat Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689. doi:10.1021/am100972r CrossRef Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689. doi:10.​1021/​am100972r CrossRef
Zurück zum Zitat Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polymer Sci Part B 42(1):5–11. doi:10.1002/polb.10668 CrossRef Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polymer Sci Part B 42(1):5–11. doi:10.​1002/​polb.​10668 CrossRef
Zurück zum Zitat Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19(2):411–424CrossRef Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19(2):411–424CrossRef
Zurück zum Zitat Supaphol P, Neamnark A, Taepaiboon P, Pavasant P (2012) Effect of degree of acetylation on in vitro biocompatibility of electrospun cellulose acetate-based fibrous matrices. Chiang Mai J Sci 39(2):209–223 Supaphol P, Neamnark A, Taepaiboon P, Pavasant P (2012) Effect of degree of acetylation on in vitro biocompatibility of electrospun cellulose acetate-based fibrous matrices. Chiang Mai J Sci 39(2):209–223
Zurück zum Zitat Suwantong O, Ruktanonchai U, Supaphol P (2010) In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res 94A(4):1216–1225. doi:10.1002/jbm.a.32797 Suwantong O, Ruktanonchai U, Supaphol P (2010) In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res 94A(4):1216–1225. doi:10.​1002/​jbm.​a.​32797
Zurück zum Zitat Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRef Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRef
Zurück zum Zitat Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRef Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRef
Zurück zum Zitat Veleirinho B, Rei MF, Lopes-Da-Silva JA (2008) Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci Part B 46(5):460–471. doi:10.1002/polb.21380 CrossRef Veleirinho B, Rei MF, Lopes-Da-Silva JA (2008) Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci Part B 46(5):460–471. doi:10.​1002/​polb.​21380 CrossRef
Metadaten
Titel
Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility
verfasst von
Katia Rodríguez
Paul Gatenholm
Scott Renneckar
Publikationsdatum
01.10.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9734-0

Weitere Artikel der Ausgabe 5/2012

Cellulose 5/2012 Zur Ausgabe