Skip to main content
Top
Published in: Journal of Computational Electronics 3/2016

02-07-2016

Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation

Authors: Aaesha Alnuaimi, Ibraheem Almansouri, Ammar Nayfeh

Published in: Journal of Computational Electronics | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate perovskite planar heterojunction solar cells using 2D physics-based TCAD simulation. The perovskite cell is modeled as an inorganic material with physics-based parameters. A planar structure consisting of \(\hbox {TiO}_{2}\) as the electron transport material (ETM), \(\hbox {CH}_{3}\hbox {NH}_{3}\hbox {PbI}_3{}_{-\mathrm{x}}\hbox {Cl}_\mathrm{x}\) as the absorber layer, and Spiro-OmeTAD as the hole transport material (HTM) is simulated. The simulated results match published experimental results indicating the accuracy of the physics-based model. Using this model, the effect of the hole mobility and electron affinity/band gap of the hole transport layer (HTM) is investigated. The results show that in order to achieve high efficiency, the mobility of the HTM layer should exceed \(10^{-4}\hbox {cm}^{2}/\hbox {V s}\). In addition, reducing the band offset to match the valance band of the perovskite results in achieving the highest efficiency. Moreover, the results are discussed in terms of charge transport in the HTM layer and the band alignment at the HTM/perovskite interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Snaith, H.J.: Perovskites?: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRef Snaith, H.J.: Perovskites?: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRef
2.
go back to reference Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef
3.
go back to reference Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)CrossRef Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)CrossRef
4.
go back to reference Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2013)CrossRef Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2013)CrossRef
5.
go back to reference Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., IlSeok, S.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013)CrossRef Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., IlSeok, S.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013)CrossRef
6.
go back to reference Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739 (2013)CrossRef Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739 (2013)CrossRef
7.
go back to reference Yan, K., Wei, Z., Li, J., Chen, H., Yi, Y., Zheng, X., Long, X., Wang, Z., Wang, J., Xu, J., Yang, S.: High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11(19), 1–6 (2015)CrossRef Yan, K., Wei, Z., Li, J., Chen, H., Yi, Y., Zheng, X., Long, X., Wang, Z., Wang, J., Xu, J., Yang, S.: High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11(19), 1–6 (2015)CrossRef
8.
go back to reference Ke, W., Fang, G., Wan, J., Tao, H., Liu, Q., Xiong, L., Qin, P., Wang, J.: Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 1–7 (2015)CrossRef Ke, W., Fang, G., Wan, J., Tao, H., Liu, Q., Xiong, L., Qin, P., Wang, J.: Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 1–7 (2015)CrossRef
9.
go back to reference Das, J., Bhaskar Kanth Siram, R., Cahen, D., Rybtchinski, B., Hodes, G.: Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. J. Mater. Chem. A 2(8), 2445–2460 (2015) Das, J., Bhaskar Kanth Siram, R., Cahen, D., Rybtchinski, B., Hodes, G.: Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. J. Mater. Chem. A 2(8), 2445–2460 (2015)
10.
go back to reference Inorganic, O., Wojciechowski, K., Stranks, S.D., Abate, A., Sadoughi, A., Kopidakis, N., Rumbles, G., Li, C., Friend, R.H., Jen, A.K., Snaith, H.J.: Heterojunction modification for highly efficient organic inorganic perovskite solar cells. ACS Nano 8(12), 12701–12709 (2014)CrossRef Inorganic, O., Wojciechowski, K., Stranks, S.D., Abate, A., Sadoughi, A., Kopidakis, N., Rumbles, G., Li, C., Friend, R.H., Jen, A.K., Snaith, H.J.: Heterojunction modification for highly efficient organic inorganic perovskite solar cells. ACS Nano 8(12), 12701–12709 (2014)CrossRef
11.
go back to reference Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 1–7 (2014)CrossRef Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 1–7 (2014)CrossRef
12.
go back to reference Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S.: Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104(2014), 253508 (2014)CrossRef Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S.: Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104(2014), 253508 (2014)CrossRef
13.
go back to reference Green, M.A., Jiang, Y., Soufiani, A.M., Ho-Baillie, A.: Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6(23), 4774–4785 (2015)CrossRef Green, M.A., Jiang, Y., Soufiani, A.M., Ho-Baillie, A.: Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6(23), 4774–4785 (2015)CrossRef
14.
go back to reference Létay, G., Hermle, M., Bett, A.W.: Simulating single-junction GaAs solar cells including photon recycling. Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006)CrossRef Létay, G., Hermle, M., Bett, A.W.: Simulating single-junction GaAs solar cells including photon recycling. Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006)CrossRef
15.
go back to reference Baudrit, M., Algora, C.: Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36 % efficiency at 1000 suns. Physica Status Solidi (a). 207(2), 474–478 (2010) Baudrit, M., Algora, C.: Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36 % efficiency at 1000 suns. Physica Status Solidi (a). 207(2), 474–478 (2010)
16.
go back to reference TCAD Sentaurus User Manual.: Version I-2013.12, Synopsys. San Jose, CA (2013) TCAD Sentaurus User Manual.: Version I-2013.12, Synopsys. San Jose, CA (2013)
17.
go back to reference Stranks, S.D., Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(2013), 341–344 (2014) Stranks, S.D., Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(2013), 341–344 (2014)
18.
go back to reference Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)CrossRef Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)CrossRef
19.
go back to reference Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y., Lin, H.-W.: Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. J. Mater. Chem. A 3(17), 9152–9159 (2015)CrossRef Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y., Lin, H.-W.: Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. J. Mater. Chem. A 3(17), 9152–9159 (2015)CrossRef
20.
go back to reference Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Snaith, H.J.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8(2), 602–609 (2015)CrossRef Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Snaith, H.J.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8(2), 602–609 (2015)CrossRef
21.
go back to reference Richards, B.S.: Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 79(3), 369–390 (2003)CrossRef Richards, B.S.: Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 79(3), 369–390 (2003)CrossRef
23.
go back to reference Cheng, J., Xie, F., Liu, Y., Sha, W.E.I., Li, X., Yang, Y., Choy, W.C.H.: Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. J. Mater. Chem. A 3, 1–9 (2015) Cheng, J., Xie, F., Liu, Y., Sha, W.E.I., Li, X., Yang, Y., Choy, W.C.H.: Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. J. Mater. Chem. A 3, 1–9 (2015)
24.
go back to reference Polander, L.E., Pahner, P., Schwarze, M., Saalfrank, M., Koerner, C., Leo, K.: Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Mater. 2(8), 19–24 (2014) Polander, L.E., Pahner, P., Schwarze, M., Saalfrank, M., Koerner, C., Leo, K.: Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Mater. 2(8), 19–24 (2014)
25.
go back to reference Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., Kahn, A.: Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7(4), 1377–1381 (2014) Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., Kahn, A.: Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7(4), 1377–1381 (2014)
26.
go back to reference Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)CrossRef Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)CrossRef
27.
go back to reference John, D.: The Physics of Two-Dimensional Semiconductors: An Introduction. Cambridge university press, Cambridge (1998) John, D.: The Physics of Two-Dimensional Semiconductors: An Introduction. Cambridge university press, Cambridge (1998)
28.
go back to reference McIntosh, K.R.: Lumps, humps and bumps: three detrimental effects in the current-voltage curve of silicon solar cells,” PhD thesis, University of New South Wales (2001) McIntosh, K.R.: Lumps, humps and bumps: three detrimental effects in the current-voltage curve of silicon solar cells,” PhD thesis, University of New South Wales (2001)
29.
go back to reference Lee, D.H., Liu, Y.P., Lee, K.H., Chae, H., Cho, S.M.: Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 11(3), 427–433 (2010)CrossRef Lee, D.H., Liu, Y.P., Lee, K.H., Chae, H., Cho, S.M.: Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 11(3), 427–433 (2010)CrossRef
30.
go back to reference Zhao, D., Sexton, M., Park, H.Y., Baure, G., Nino, J.C., So, F.: High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5(6), 1–5 (2015)CrossRef Zhao, D., Sexton, M., Park, H.Y., Baure, G., Nino, J.C., So, F.: High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5(6), 1–5 (2015)CrossRef
Metadata
Title
Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation
Authors
Aaesha Alnuaimi
Ibraheem Almansouri
Ammar Nayfeh
Publication date
02-07-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0850-1

Other articles of this Issue 3/2016

Journal of Computational Electronics 3/2016 Go to the issue