Skip to main content
Top
Published in: Journal of Materials Science 19/2019

27-06-2019 | Chemical routes to materials

Effect of multi-walled carbon nanotubes addition on MnOx/Ti electrode prepared by spraying–calcination method for electro-catalytic oxidation of Acid Red B

Published in: Journal of Materials Science | Issue 19/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The titanium-based electrodes with MnOx nanoparticles coating (MnOx/Ti) and MnOx nanoparticles mixed with multi-walled carbon nanotubes (MnOx–CNTs/Ti) were fabricated by spraying–calcination method. The physicochemical properties of electrodes were investigated by SEM, XRD and XPS, which indicated that the surface coating of MnOx–CNTs/Ti, with MnOx nanoparticles dispersed uniformly on the CNTs, was smoother and with higher integrity than MnOx/Ti. Acid Red B was used as model pollutant to investigate the electro-catalytic activity of the electrodes, and the results revealed that the removal efficiency of Acid Red B reached 93.6% and 98.0% by MnOx/Ti and MnOx–CNTs/Ti, respectively, and the cell potential during the process of degradation by MnOx–CNTs/Ti was relatively low and stable. The electrochemical results confirmed that MnOx–CNTs/Ti possessed smaller charge transfer resistance and higher oxygen evolution current compared with MnOx/Ti, which can enhance the electro-catalytic activity and reduce the energy consumption by accelerating the transfer of electrons on the electrode surface. The accelerated lifetime tests of electrodes were carried out and showed that actual service lifetimes of MnOx–CNTs/Ti were 38 times of that for MnOx/Ti calculated by the experienced formula, which demonstrated that the durability of MnOx-based electrode was significantly promoted by addition of CNTs on Ti substrate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kong Y, Wang Z, Wang Y et al (2011) Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mater 26:459–464CrossRef Kong Y, Wang Z, Wang Y et al (2011) Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mater 26:459–464CrossRef
2.
go back to reference Ureta-ZañArtu MS, Bustos P, Berríos C et al (2002) Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochim Acta 47:2399–2406CrossRef Ureta-ZañArtu MS, Bustos P, Berríos C et al (2002) Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochim Acta 47:2399–2406CrossRef
3.
go back to reference Zor S, Yazici B, Erbil M et al (1998) The electrochemical degradation of linearalkylbenzenesulfonate (LAS) on platinum electrode. Water Res 32:579–586 Zor S, Yazici B, Erbil M et al (1998) The electrochemical degradation of linearalkylbenzenesulfonate (LAS) on platinum electrode. Water Res 32:579–586
4.
go back to reference Iniesta J, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578CrossRef Iniesta J, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578CrossRef
6.
go back to reference Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407CrossRef Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407CrossRef
7.
go back to reference Duby P (1993) The history of progress in dimensionally stable anodes. JOM 45:41–43CrossRef Duby P (1993) The history of progress in dimensionally stable anodes. JOM 45:41–43CrossRef
8.
go back to reference Lin H, Niu J, Ding S et al (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res 46:2281–2289CrossRef Lin H, Niu J, Ding S et al (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res 46:2281–2289CrossRef
9.
go back to reference Martínez-Huitle CA, De Battisti A, Ferro S et al (2008) Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes. Environ Sci Technol 42:6929–6935CrossRef Martínez-Huitle CA, De Battisti A, Ferro S et al (2008) Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes. Environ Sci Technol 42:6929–6935CrossRef
10.
go back to reference Turkay O, Ersoy ZG, Barışçı S (2017) Review—the application of an electro-peroxone process in water and wastewater treatment. J Electrochem Soc 164:E94–E102CrossRef Turkay O, Ersoy ZG, Barışçı S (2017) Review—the application of an electro-peroxone process in water and wastewater treatment. J Electrochem Soc 164:E94–E102CrossRef
11.
go back to reference Kaur R, Kushwaha JP, Singh N (2018) Electro-oxidation of ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: evaluation and mechanistic approach. Chemosphere 193:685–694CrossRef Kaur R, Kushwaha JP, Singh N (2018) Electro-oxidation of ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: evaluation and mechanistic approach. Chemosphere 193:685–694CrossRef
12.
go back to reference Terezo A, Pereira EC (2002) Preparation and characterisation of Ti/RuO2 anodes obtained by sol–gel and conventional routes. Mater Lett 53:339–345CrossRef Terezo A, Pereira EC (2002) Preparation and characterisation of Ti/RuO2 anodes obtained by sol–gel and conventional routes. Mater Lett 53:339–345CrossRef
13.
go back to reference Zanta CLPS, de Andrade AR, Boodts JFC (1999) Solvent and support electrolyte effects on the catalytic activity of Ti/RuO2 and Ti/IrO2 electrodes: oxidation of isosafrole as a probe model. Electrochim Acta 43:3333–3340CrossRef Zanta CLPS, de Andrade AR, Boodts JFC (1999) Solvent and support electrolyte effects on the catalytic activity of Ti/RuO2 and Ti/IrO2 electrodes: oxidation of isosafrole as a probe model. Electrochim Acta 43:3333–3340CrossRef
15.
go back to reference Massa A, Hernández S, Lamberti A et al (2017) Electro-oxidation of phenol over electrodeposited MnOx nanostructures and the role of a TiO2 nanotubes interlayer. Appl Catal B Environ 203:270–281CrossRef Massa A, Hernández S, Lamberti A et al (2017) Electro-oxidation of phenol over electrodeposited MnOx nanostructures and the role of a TiO2 nanotubes interlayer. Appl Catal B Environ 203:270–281CrossRef
16.
go back to reference Nijjer S, Thonstad J, Haarberg GM (2001) Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochim Acta 46:3503–3508CrossRef Nijjer S, Thonstad J, Haarberg GM (2001) Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochim Acta 46:3503–3508CrossRef
17.
go back to reference Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498CrossRef Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498CrossRef
18.
go back to reference Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527CrossRef Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527CrossRef
19.
go back to reference Zhang M, Gao J, Hong W et al (2019) Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 537:238–246CrossRef Zhang M, Gao J, Hong W et al (2019) Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 537:238–246CrossRef
20.
go back to reference Ottone C, Armandi M, Hernández S et al (2015) Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chem Eng J 278:36–45CrossRef Ottone C, Armandi M, Hernández S et al (2015) Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chem Eng J 278:36–45CrossRef
22.
go back to reference Li P, Zhao YM, Ding BB et al (2015) Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/β-PbO2 electrode during phenol electro-oxidation. J Electroanal Chem 747:45–52CrossRef Li P, Zhao YM, Ding BB et al (2015) Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/β-PbO2 electrode during phenol electro-oxidation. J Electroanal Chem 747:45–52CrossRef
23.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
25.
go back to reference Duan XY, Ma F, Yuan ZX et al (2012) Comparative studies on the electro-catalytic oxidation performance of surfactant–carbon nanotube-modified PbO2 electrodes. J Electroanal Chem 677–680:90–100CrossRef Duan XY, Ma F, Yuan ZX et al (2012) Comparative studies on the electro-catalytic oxidation performance of surfactant–carbon nanotube-modified PbO2 electrodes. J Electroanal Chem 677–680:90–100CrossRef
26.
go back to reference Xing JT, Chen DH, Zhao XX et al (2015) Preparation and characterization of a novel porous Ti/SnO2–Sb2O3–CNT/PbO2 electrode for the anodic oxidation of phenol wastewater. RSC Adv 5:5354–53513 Xing JT, Chen DH, Zhao XX et al (2015) Preparation and characterization of a novel porous Ti/SnO2–Sb2O3–CNT/PbO2 electrode for the anodic oxidation of phenol wastewater. RSC Adv 5:5354–53513
27.
go back to reference Hu FP, Cui XW, Chen W et al (2010) Pulse electro-codeposition of Ti/SnO2–Sb2O4–CNT electrode for phenol oxidation. Electrochem Solid State Lett 13:F20–F23CrossRef Hu FP, Cui XW, Chen W et al (2010) Pulse electro-codeposition of Ti/SnO2–Sb2O4–CNT electrode for phenol oxidation. Electrochem Solid State Lett 13:F20–F23CrossRef
28.
go back to reference Yang SM, Liang XP, Zhang D et al (2018) MnOx/Ti composite membrane anode in the electrocatalytic membrane reactor for phenolic wastewater treatment. J Electrochem Soc 165:E20–E27CrossRef Yang SM, Liang XP, Zhang D et al (2018) MnOx/Ti composite membrane anode in the electrocatalytic membrane reactor for phenolic wastewater treatment. J Electrochem Soc 165:E20–E27CrossRef
29.
go back to reference Lee SW, Kim J, Chen S et al (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRef Lee SW, Kim J, Chen S et al (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRef
30.
go back to reference Liu XW, Sun XF, Huang YX et al (2010) Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res 44:5298–5305CrossRef Liu XW, Sun XF, Huang YX et al (2010) Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res 44:5298–5305CrossRef
31.
go back to reference Reddy ALM, Shaijumon MM, Gowda SR et al (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRef Reddy ALM, Shaijumon MM, Gowda SR et al (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRef
32.
go back to reference Correa-Lozano B, Comninellis C, Battisti AD (1997) Service life of Ti/SnO2–Sb2O5 anodes. J Appl Electrochem 27:970–974CrossRef Correa-Lozano B, Comninellis C, Battisti AD (1997) Service life of Ti/SnO2–Sb2O5 anodes. J Appl Electrochem 27:970–974CrossRef
33.
go back to reference Zhao GH, Cui X, Liu MC et al (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486CrossRef Zhao GH, Cui X, Liu MC et al (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486CrossRef
34.
go back to reference Jiang HG, Ruhle M, Lavernia EJ (1999) On the applicability of the X-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J Mater Res 14:549–559CrossRef Jiang HG, Ruhle M, Lavernia EJ (1999) On the applicability of the X-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J Mater Res 14:549–559CrossRef
35.
go back to reference Dicastro V, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc 48:117–123CrossRef Dicastro V, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc 48:117–123CrossRef
36.
go back to reference Wang Y, Cui JW, Luo L et al (2017) One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing. Appl Surf Sci 423:1182–1187CrossRef Wang Y, Cui JW, Luo L et al (2017) One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing. Appl Surf Sci 423:1182–1187CrossRef
37.
go back to reference Dong H, Chen Y, Han M et al (2014) Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J Mater Chem A 2:1272–1276CrossRef Dong H, Chen Y, Han M et al (2014) Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J Mater Chem A 2:1272–1276CrossRef
38.
go back to reference Li Q, Liu JH, Zou JH et al (2011) Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J Power Sources 196:565–572CrossRef Li Q, Liu JH, Zou JH et al (2011) Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J Power Sources 196:565–572CrossRef
39.
go back to reference Hernández S, Ottone C, Varetti S et al (2016) Spin-coated vs. electrodeposited Mn oxide films as water oxidation catalysts. Materials 9:296CrossRef Hernández S, Ottone C, Varetti S et al (2016) Spin-coated vs. electrodeposited Mn oxide films as water oxidation catalysts. Materials 9:296CrossRef
40.
go back to reference Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156CrossRef Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156CrossRef
41.
go back to reference Sokol Skii GV, Ivanova SV, Ivanova ND et al (2012) Doped manganese (IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions. J Water Chem Technol 34:227–233CrossRef Sokol Skii GV, Ivanova SV, Ivanova ND et al (2012) Doped manganese (IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions. J Water Chem Technol 34:227–233CrossRef
42.
go back to reference Peng WC, Wang SB, Li XY (2016) Shape-controlled synthesis of one-dimensional α-MnO2 nanocrystals for organic detection and pollutant degradation. Sep Purif Technol 163:15–22CrossRef Peng WC, Wang SB, Li XY (2016) Shape-controlled synthesis of one-dimensional α-MnO2 nanocrystals for organic detection and pollutant degradation. Sep Purif Technol 163:15–22CrossRef
43.
go back to reference Xu L, Song XL (2015) A novel Ti/antimony-doped tin oxide nanoparticles electrode prepared by screen printing method and its application in electrochemical degradation of C.I. Acid Red 73. Electrochim Acta 185:6–16CrossRef Xu L, Song XL (2015) A novel Ti/antimony-doped tin oxide nanoparticles electrode prepared by screen printing method and its application in electrochemical degradation of C.I. Acid Red 73. Electrochim Acta 185:6–16CrossRef
44.
go back to reference Duan XY, Zhao YY, Liu W et al (2014) Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode. J Taiwan Inst Chem E 45:2975–2985CrossRef Duan XY, Zhao YY, Liu W et al (2014) Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode. J Taiwan Inst Chem E 45:2975–2985CrossRef
45.
go back to reference Guo CY, Li H, Zhang X et al (2015) 3D porous CNT/MnO2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application. Sens Actuators B Chem 206:407–414CrossRef Guo CY, Li H, Zhang X et al (2015) 3D porous CNT/MnO2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application. Sens Actuators B Chem 206:407–414CrossRef
46.
go back to reference Montilla F, Morallón E, De Battisti A et al (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. J Phys Chem B 108:5036–5043CrossRef Montilla F, Morallón E, De Battisti A et al (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. J Phys Chem B 108:5036–5043CrossRef
47.
go back to reference Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants. Electrochim Acta 39:1857–1862CrossRef Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants. Electrochim Acta 39:1857–1862CrossRef
48.
go back to reference Liu A, Liu K, Zhou H et al (2018) Solution evaporation processed high quality perovskite films. Sci Bull 63:1591–1596CrossRef Liu A, Liu K, Zhou H et al (2018) Solution evaporation processed high quality perovskite films. Sci Bull 63:1591–1596CrossRef
49.
go back to reference Chen K, Li Wei HJ, Xu Y et al (2019) Untying thioether bond structure enabled by “Voltage-Scissors” for stable room temperature sodium-sulfur batteries. Nanoscale 11:5967–5973CrossRef Chen K, Li Wei HJ, Xu Y et al (2019) Untying thioether bond structure enabled by “Voltage-Scissors” for stable room temperature sodium-sulfur batteries. Nanoscale 11:5967–5973CrossRef
50.
go back to reference Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294CrossRef Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294CrossRef
Metadata
Title
Effect of multi-walled carbon nanotubes addition on MnOx/Ti electrode prepared by spraying–calcination method for electro-catalytic oxidation of Acid Red B
Publication date
27-06-2019
Published in
Journal of Materials Science / Issue 19/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03731-1

Other articles of this Issue 19/2019

Journal of Materials Science 19/2019 Go to the issue

Premium Partners