Skip to main content
Top
Published in: Journal of Electronic Materials 1/2024

07-11-2023 | Original Research Article

Effect of Nickel (Ni) Ion Doping on the Morphology and Supercapacitive Performance of Mn3O4 Thin Films

Authors: Tanaji S. Patil, V. P. Kothavale, V. P. Malekar, R. S. Kamble, R. B. Patil, K. V. Gurav, M. V. Takale, S. A. Gangawane

Published in: Journal of Electronic Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report the effect of nickel (Ni) ion doping on the structure, morphology, and supercapacitive performance of Mn3O4 thin film electrodes, deposited by a simple electrophoretic deposition technique. The structural and compositional studies of these thin films were conducted by x-ray diffraction and Fourier transform infrared spectroscopy. The morphological and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, and UV–visible spectroscopy. These studies confirmed the nanoflake-type surface morphology of nickel-doped thin films. X-ray photoelectron spectroscopy provided information about various valence states and surface composition of the thin films. Cyclic voltammetry study confirmed the surface redox pseudocapacitive behavior of all thin films. The 2 mol.% nickel ion-doped thin film electrode displayed the highest specific capacitance of 816 F g−1 and was evaluated from the galvanostatic charge/discharge curve. It also exhibited outstanding cyclic stability, with 93% capacitance retention after 2000 cycles. Electrochemical impedance spectroscopy revealed the improved supercapacitive performance of the nickel-doped Mn3Othin film electrodes, attributed to improved conductivity and charge transport for surface redox reactions. Thus, the present study suggests that the nickel-doped Mn3O4 thin film is a promising candidate as electrode material in supercapacitors.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Raja, A. Nallathambi, A. Prakasam, S. Gopinath, C. Ragupathi, S. Narayanan, P. Tamizhdurai, R. Kumaran, N.S. Alsaiari, K.M. Abualnaja, and M. Ouladsmane, Effect of lattice strain on structure, morphology, electrical conductivity and magneto-optical and catalytic properties of Ni-doped Mn3O4 nano-crystallites synthesized by microwave route. J. Saudi Chem. Soc. 26, 101440 (2022).CrossRef G. Raja, A. Nallathambi, A. Prakasam, S. Gopinath, C. Ragupathi, S. Narayanan, P. Tamizhdurai, R. Kumaran, N.S. Alsaiari, K.M. Abualnaja, and M. Ouladsmane, Effect of lattice strain on structure, morphology, electrical conductivity and magneto-optical and catalytic properties of Ni-doped Mn3O4 nano-crystallites synthesized by microwave route. J. Saudi Chem. Soc. 26, 101440 (2022).CrossRef
2.
go back to reference V.C. Bose and V. Biju, Mixed valence nanostructured Mn3O4 for supercapacitor applications. Bull. Mater. Sci. 38, 865 (2015).CrossRef V.C. Bose and V. Biju, Mixed valence nanostructured Mn3O4 for supercapacitor applications. Bull. Mater. Sci. 38, 865 (2015).CrossRef
3.
go back to reference M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, and X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chem. Eng. J. 334, 2383 (2018).CrossRef M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, and X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chem. Eng. J. 334, 2383 (2018).CrossRef
4.
go back to reference M. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, and X. Lu, Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem. 129, 5546 (2017).CrossRef M. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, and X. Lu, Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem. 129, 5546 (2017).CrossRef
5.
go back to reference P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).CrossRef P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).CrossRef
6.
go back to reference V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).CrossRef V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).CrossRef
7.
go back to reference J. Sun, B. Luo, and H. Li, A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future. Adv. Energy Sustain. Res. 3, 2100191 (2022).CrossRef J. Sun, B. Luo, and H. Li, A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future. Adv. Energy Sustain. Res. 3, 2100191 (2022).CrossRef
8.
go back to reference M. Gaire, B. Subedi, S. Adireddy, and D. Chrisey, Ultra-long cycle life and binder-free manganese-cobalt oxide supercapacitor electrodes through photonic nanostructuring. RSC Adv. 10, 40234 (2020).CrossRef M. Gaire, B. Subedi, S. Adireddy, and D. Chrisey, Ultra-long cycle life and binder-free manganese-cobalt oxide supercapacitor electrodes through photonic nanostructuring. RSC Adv. 10, 40234 (2020).CrossRef
9.
go back to reference D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, and J. Park, Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 119, 1921 (2015).CrossRef D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, and J. Park, Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 119, 1921 (2015).CrossRef
10.
go back to reference I. Kortidis, H.C. Swart, S.S. Ray, and D.E. Motaung, Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of P-type Mn3O4 nanorods. Sens. Actuators B Chem. 285, 92 (2019).CrossRef I. Kortidis, H.C. Swart, S.S. Ray, and D.E. Motaung, Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of P-type Mn3O4 nanorods. Sens. Actuators B Chem. 285, 92 (2019).CrossRef
11.
go back to reference M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, and A.A. Ismail, SnO2 doped ZnO nanostructures for highly efficient photocatalyst. J. Mol. Catal. A Chem. 397, 19 (2015).CrossRef M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, and A.A. Ismail, SnO2 doped ZnO nanostructures for highly efficient photocatalyst. J. Mol. Catal. A Chem. 397, 19 (2015).CrossRef
12.
go back to reference P. Immanuel, G. Senguttuvan, J.H. Chang, K. Mohanraj, and N.S. Kumar, Effect of Cr doping on Mn3O4 thin films for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 32, 3732 (2021).CrossRef P. Immanuel, G. Senguttuvan, J.H. Chang, K. Mohanraj, and N.S. Kumar, Effect of Cr doping on Mn3O4 thin films for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 32, 3732 (2021).CrossRef
13.
go back to reference Y. Hanifehpour, B. Mirtamizdoust, M.A. Cheney, and S.W. Joo, Facile synthesis, characterization and BET study of neodymium-doped spinel Mn3O4 nanomaterial with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 28, 11654 (2017).CrossRef Y. Hanifehpour, B. Mirtamizdoust, M.A. Cheney, and S.W. Joo, Facile synthesis, characterization and BET study of neodymium-doped spinel Mn3O4 nanomaterial with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 28, 11654 (2017).CrossRef
14.
go back to reference A.G. Naiknaware, J.U. Chavan, S.H. Kaldate, and A.A. Yadav, Studies on spray deposited Ni doped Mn3O4 electrodes for supercapacitor applications. J. Alloys Compd. 774, 787 (2019).CrossRef A.G. Naiknaware, J.U. Chavan, S.H. Kaldate, and A.A. Yadav, Studies on spray deposited Ni doped Mn3O4 electrodes for supercapacitor applications. J. Alloys Compd. 774, 787 (2019).CrossRef
15.
go back to reference G. Xu, J. Shi, W. Dong, Y. Wen, X. Min, and A. Tang, One-pot synthesis of a Ni-Mn3O4 nanocomposite for supercapacitors. J. Alloys Compd. 630, 266 (2015).CrossRef G. Xu, J. Shi, W. Dong, Y. Wen, X. Min, and A. Tang, One-pot synthesis of a Ni-Mn3O4 nanocomposite for supercapacitors. J. Alloys Compd. 630, 266 (2015).CrossRef
16.
go back to reference L.O. Animasahun, V.A. Owoeye, K.O. Olumurewa, W. Buremoh, H.K. Busari, Y.A. Ajayeoba, M.M. Popoola, J.T. Adeleke, and S.A. Adewinbi, Enhanced optoelectronic and supercapacitive performance of electrodeposited Mn3O4 thin film prepared from two-electrode: an effect of Zn-ion incorporation. Results Surf. Interfaces 11, 100123 (2023).CrossRef L.O. Animasahun, V.A. Owoeye, K.O. Olumurewa, W. Buremoh, H.K. Busari, Y.A. Ajayeoba, M.M. Popoola, J.T. Adeleke, and S.A. Adewinbi, Enhanced optoelectronic and supercapacitive performance of electrodeposited Mn3O4 thin film prepared from two-electrode: an effect of Zn-ion incorporation. Results Surf. Interfaces 11, 100123 (2023).CrossRef
17.
18.
go back to reference Z. Chen, C. Zhou, J. Lin, Z. Zhu, J. Feng, L. Fang, and J. Cheng, ZrO2-Coated stainless steel mesh with underwater superoleophobicity by electrophoretic deposition for durable oil/water separation. J. Sol-Gel Sci. Technol. 85, 23 (2018).CrossRef Z. Chen, C. Zhou, J. Lin, Z. Zhu, J. Feng, L. Fang, and J. Cheng, ZrO2-Coated stainless steel mesh with underwater superoleophobicity by electrophoretic deposition for durable oil/water separation. J. Sol-Gel Sci. Technol. 85, 23 (2018).CrossRef
19.
go back to reference L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1 (2007).CrossRef L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1 (2007).CrossRef
20.
go back to reference Y. Park, H. Kang, W. Jeong, H. Son, and D.-H. Ha, Electrophoretic deposition of aged and charge controlled colloidal copper sulfide nanoparticles. Nanomaterials 11, 133 (2021).CrossRef Y. Park, H. Kang, W. Jeong, H. Son, and D.-H. Ha, Electrophoretic deposition of aged and charge controlled colloidal copper sulfide nanoparticles. Nanomaterials 11, 133 (2021).CrossRef
21.
go back to reference D.M. Behunová, G. Gallios, V. Girman, H. Kolev, M. Kaňuchová, S. Dolinská, and M. Václavíková, Electrophoretic deposition of graphene oxide on stainless steel substrate. Nanomaterials 11, 1 (2021). D.M. Behunová, G. Gallios, V. Girman, H. Kolev, M. Kaňuchová, S. Dolinská, and M. Václavíková, Electrophoretic deposition of graphene oxide on stainless steel substrate. Nanomaterials 11, 1 (2021).
22.
go back to reference A. A. Fitrah Rabani and M. Y. Noorsuhana, IEEE business engineering and industrial applications colloquium (BEIAC), p. 56 (2013). A. A. Fitrah Rabani and M. Y. Noorsuhana, IEEE business engineering and industrial applications colloquium (BEIAC), p. 56 (2013).
23.
go back to reference E. Talib and M.A. Azam, An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device. J. Mater. Res. 31, 1972 (2016).CrossRef E. Talib and M.A. Azam, An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device. J. Mater. Res. 31, 1972 (2016).CrossRef
24.
go back to reference N.A. Kyeremateng, T.M. Dinh, and D. Pech, Electrophoretic deposition of Li4Ti5O12 nanoparticles with a novel additive for Li-ion microbatteries. RSC Adv. 5, 61502 (2015).CrossRef N.A. Kyeremateng, T.M. Dinh, and D. Pech, Electrophoretic deposition of Li4Ti5O12 nanoparticles with a novel additive for Li-ion microbatteries. RSC Adv. 5, 61502 (2015).CrossRef
25.
go back to reference M. Fayette, A. Nelson, and R.D. Robinson, Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions. J. Mater. Chem. A 3, 4274 (2015).CrossRef M. Fayette, A. Nelson, and R.D. Robinson, Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions. J. Mater. Chem. A 3, 4274 (2015).CrossRef
26.
go back to reference T.A. Salman and H.M. Raheem, Electrophoresis deposition of tungsten oxide nanoparticles for corrosion inhibition. J. Phys. Conf. Ser. 1664, 012053 (2020).CrossRef T.A. Salman and H.M. Raheem, Electrophoresis deposition of tungsten oxide nanoparticles for corrosion inhibition. J. Phys. Conf. Ser. 1664, 012053 (2020).CrossRef
27.
go back to reference W. Jin, S. Xiao, Q. Kou, D. Ding, J. Zhang, X. Fang, C. Ge, C. Zhong, H. Zhu, and G.M. Haarberg, Preparation of diboride coatings by electrophoretic deposition in nanoparticle-containing molten inorganic salts. Mater. Lett. 306, 130908 (2022).CrossRef W. Jin, S. Xiao, Q. Kou, D. Ding, J. Zhang, X. Fang, C. Ge, C. Zhong, H. Zhu, and G.M. Haarberg, Preparation of diboride coatings by electrophoretic deposition in nanoparticle-containing molten inorganic salts. Mater. Lett. 306, 130908 (2022).CrossRef
28.
go back to reference J.S. Hong, H. Seo, Y.H. Lee, K.H. Cho, C. Ko, S. Park, and K.T. Nam, Nickel-doping effect on Mn3O4 nanoparticles for electrochemical water oxidation under neutral condition. Small Methods 4, 1900733 (2020).CrossRef J.S. Hong, H. Seo, Y.H. Lee, K.H. Cho, C. Ko, S. Park, and K.T. Nam, Nickel-doping effect on Mn3O4 nanoparticles for electrochemical water oxidation under neutral condition. Small Methods 4, 1900733 (2020).CrossRef
29.
go back to reference S. Hirai, S. Yagi, A. Seno, M. Fujioka, T. Ohno, and T. Matsuda, Enhancement of the oxygen evolution reaction in Mn3+-based electrocatalysts: correlation between Jahn–Teller distortion and catalytic activity. RSC Adv. 6, 2019 (2016).CrossRef S. Hirai, S. Yagi, A. Seno, M. Fujioka, T. Ohno, and T. Matsuda, Enhancement of the oxygen evolution reaction in Mn3+-based electrocatalysts: correlation between Jahn–Teller distortion and catalytic activity. RSC Adv. 6, 2019 (2016).CrossRef
30.
go back to reference V. Maruthapandian, T. Pandiarajan, V. Saraswathy, and S. Muralidharan, Oxygen evolution catalytic behaviour of Ni doped Mn3O4 in alkaline medium. RSC Adv. 6, 48995 (2016).CrossRef V. Maruthapandian, T. Pandiarajan, V. Saraswathy, and S. Muralidharan, Oxygen evolution catalytic behaviour of Ni doped Mn3O4 in alkaline medium. RSC Adv. 6, 48995 (2016).CrossRef
31.
go back to reference M.M. Mohamed and H. El-Farsy, Rapid reduction of nitroarenes photocatalyzed by an innovative Mn3O4/α-Ag2WO4 nanoparticles. Sci. Rep. 10, 21495 (2020).CrossRef M.M. Mohamed and H. El-Farsy, Rapid reduction of nitroarenes photocatalyzed by an innovative Mn3O4/α-Ag2WO4 nanoparticles. Sci. Rep. 10, 21495 (2020).CrossRef
32.
go back to reference V.C. Bose, N. Sugathan, and V. Biju, Novel sol–gel method for low temperature synthesis of nanostructured Mn3O4: structure, cation valence states, optical and electrical properties. J. Cryst. Growth 555, 125961 (2021).CrossRef V.C. Bose, N. Sugathan, and V. Biju, Novel sol–gel method for low temperature synthesis of nanostructured Mn3O4: structure, cation valence states, optical and electrical properties. J. Cryst. Growth 555, 125961 (2021).CrossRef
33.
go back to reference J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37 (1968).CrossRef J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37 (1968).CrossRef
34.
go back to reference S. Tekin and I. Karaduman Er, The structural, morphological, optical, and gas-sensing properties of Mn3O4 thin films grown by successive ionic layer adsorption and reaction technique. J. Mater. Sci. Mater. Electron. 33, 14519 (2022).CrossRef S. Tekin and I. Karaduman Er, The structural, morphological, optical, and gas-sensing properties of Mn3O4 thin films grown by successive ionic layer adsorption and reaction technique. J. Mater. Sci. Mater. Electron. 33, 14519 (2022).CrossRef
35.
go back to reference S. Ramezanpour, I. Sheikhshoaie, and M. Khatamian, Synthesis, characterization and photocatalytic properties of V-doped Mn3O4 nanoparticles as a visible light-activated photocatalyst. J. Mol. Liq. 231, 64 (2017).CrossRef S. Ramezanpour, I. Sheikhshoaie, and M. Khatamian, Synthesis, characterization and photocatalytic properties of V-doped Mn3O4 nanoparticles as a visible light-activated photocatalyst. J. Mol. Liq. 231, 64 (2017).CrossRef
36.
go back to reference T.M. Patil, R.T. Patil, A.H. Patil, N.B. Wadkar, A.S. Patil, S.D. Dhas, V.J. Fulari, and V.P. Malekar, Optimally tuned deposition of 3D interconnected ultrathin cobalt oxide nanoflakes on Ni-foam by electrodeposition technique for targeted supercapacitor application. Results Chem. 4, 100571 (2022).CrossRef T.M. Patil, R.T. Patil, A.H. Patil, N.B. Wadkar, A.S. Patil, S.D. Dhas, V.J. Fulari, and V.P. Malekar, Optimally tuned deposition of 3D interconnected ultrathin cobalt oxide nanoflakes on Ni-foam by electrodeposition technique for targeted supercapacitor application. Results Chem. 4, 100571 (2022).CrossRef
37.
go back to reference E.R. Kavitha, S. Meiyazhagan, S. Yugeswaran, P. Balraju, and K. Suresh, Electrochemical prospects and potential of hausmannite Mn3O4 nanoparticles synthesized through microplasma discharge for supercapacitor applications. Int. J. Energy Res. 45, 7038 (2021).CrossRef E.R. Kavitha, S. Meiyazhagan, S. Yugeswaran, P. Balraju, and K. Suresh, Electrochemical prospects and potential of hausmannite Mn3O4 nanoparticles synthesized through microplasma discharge for supercapacitor applications. Int. J. Energy Res. 45, 7038 (2021).CrossRef
38.
go back to reference X. Liu, W. Zang, C. Guan, L. Zhang, Y. Qian, A.M. Elshahawy, D. Zhao, S.J. Pennycook, and J. Wang, Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors. ACS Energy Lett. 3, 2462 (2018).CrossRef X. Liu, W. Zang, C. Guan, L. Zhang, Y. Qian, A.M. Elshahawy, D. Zhao, S.J. Pennycook, and J. Wang, Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors. ACS Energy Lett. 3, 2462 (2018).CrossRef
39.
go back to reference A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S.U. Hassan, and T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9, 27432 (2019).CrossRef A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S.U. Hassan, and T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9, 27432 (2019).CrossRef
40.
go back to reference O. Bayram, M.E. Ertargin, E. Igman, H. Guney, and O. Simsek, Synthesis and characterization of Zn-doped Mn3O4 thin films using successive ionic layer adsorption and reaction technique: its structural, optical and wettability properties. J. Mater. Sci. Mater. Electron. 29, 9466 (2018).CrossRef O. Bayram, M.E. Ertargin, E. Igman, H. Guney, and O. Simsek, Synthesis and characterization of Zn-doped Mn3O4 thin films using successive ionic layer adsorption and reaction technique: its structural, optical and wettability properties. J. Mater. Sci. Mater. Electron. 29, 9466 (2018).CrossRef
41.
go back to reference Q. Tian, X. Wang, G. Huang, and X. Guo, Nanostructured (Co, Mn)3O4 for high capacitive supercapacitor applications. Nanoscale Res. Lett. 12, 214 (2017).CrossRef Q. Tian, X. Wang, G. Huang, and X. Guo, Nanostructured (Co, Mn)3O4 for high capacitive supercapacitor applications. Nanoscale Res. Lett. 12, 214 (2017).CrossRef
42.
go back to reference S. Bhattar, A. Krishnakumar, S. Kanitkar, A. Abedin, D. Shekhawat, D.J. Haynes, and J.J. Spivey, 110th anniversary: dry reforming of methane over Ni- and Sr-substituted lanthanum zirconate pyrochlore catalysts: effect of Ni loading. Ind. Eng. Chem. Res. 58, 19386 (2019).CrossRef S. Bhattar, A. Krishnakumar, S. Kanitkar, A. Abedin, D. Shekhawat, D.J. Haynes, and J.J. Spivey, 110th anniversary: dry reforming of methane over Ni- and Sr-substituted lanthanum zirconate pyrochlore catalysts: effect of Ni loading. Ind. Eng. Chem. Res. 58, 19386 (2019).CrossRef
43.
go back to reference B. Jansi Rani, S. Rathika, G. Ravi, and R. Yuvakkumar, Synthesis of MnNiO3/Mn3O4 nanocomposites for the water electrolysis process. J. Sol-Gel Sci. Technol. 92, 1 (2019).CrossRef B. Jansi Rani, S. Rathika, G. Ravi, and R. Yuvakkumar, Synthesis of MnNiO3/Mn3O4 nanocomposites for the water electrolysis process. J. Sol-Gel Sci. Technol. 92, 1 (2019).CrossRef
44.
go back to reference X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, and C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148 (2015).CrossRef X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, and C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148 (2015).CrossRef
45.
go back to reference D. Gandla, X. Wu, F. Zhang, C. Wu, and D.Q. Tan, High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels. ACS Omega 6, 7615 (2021).CrossRef D. Gandla, X. Wu, F. Zhang, C. Wu, and D.Q. Tan, High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels. ACS Omega 6, 7615 (2021).CrossRef
46.
go back to reference M. Ates, M.A. Serin, I. Ekmen, and Y.N. Ertas, Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 72, 2573 (2015).CrossRef M. Ates, M.A. Serin, I. Ekmen, and Y.N. Ertas, Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 72, 2573 (2015).CrossRef
47.
go back to reference J. Dong, Q. Yang, Q. Zhao, Z. Hou, Y. Zhou, and R. Zhang, Poly(aniline-co-pyrrole)-coated Ni-doped manganese dioxide as electrode materials for supercapacitors. Funct. Mater. Lett. 13, 2051007 (2020).CrossRef J. Dong, Q. Yang, Q. Zhao, Z. Hou, Y. Zhou, and R. Zhang, Poly(aniline-co-pyrrole)-coated Ni-doped manganese dioxide as electrode materials for supercapacitors. Funct. Mater. Lett. 13, 2051007 (2020).CrossRef
Metadata
Title
Effect of Nickel (Ni) Ion Doping on the Morphology and Supercapacitive Performance of Mn3O4 Thin Films
Authors
Tanaji S. Patil
V. P. Kothavale
V. P. Malekar
R. S. Kamble
R. B. Patil
K. V. Gurav
M. V. Takale
S. A. Gangawane
Publication date
07-11-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10765-4

Other articles of this Issue 1/2024

Journal of Electronic Materials 1/2024 Go to the issue