Skip to main content
Top
Published in: Journal of Electronic Materials 1/2024

15-11-2023 | Original Research Article

Comparative Analysis of Highly Sensitive Ammonia Gas Sensors Based on ZnO, CdO, and CdZnO Thin Films

Authors: B. Amudhavalli, R. Mariappan, M. Prasath

Published in: Journal of Electronic Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CdO, ZnO, and CdZnO thin films were deposited using the nebulizer spray pyrolysis method, and their properties were investigated for gas sensing applications. The deposition process involved the use of analytical reagent-grade chemicals and a nebulizer spray pyrolysis setup. X-ray diffraction analysis revealed the cubic and hexagonal crystal structures of the films, with distinct peak positions corresponding to CdO and ZnO. The addition of CdO influenced the growth kinetics and crystallization behavior of the films, leading to an increase in the average crystallite size of CdZnO films compared to pure ZnO films. Optical analysis showed that CdO, CdZnO, and ZnO films had direct band gaps of 2.3 eV, 3.03 eV, and 3.18 eV, respectively. The gas sensing properties of CdO films were investigated, and the sensing mechanism was elucidated in terms of electron release and capture by chemisorbed oxygen species. Impedance spectroscopy measurements demonstrated the sensitivity of the CdO sensor to different concentrations of ammonia gas. The fabricated CdO sensor exhibited enhanced sensitivity at room temperature compared to higher temperatures. Overall, the CdO, ZnO, and CdZnO thin films show promise for gas sensing applications.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Amudhavalli, R. Mariappan, and M. Prasath, Synthesis chemical methods for deposition of ZnO, CdO and CdZnO thin films to facilitate further research. J. Alloys Compd. 925, 166511 (2022).CrossRef B. Amudhavalli, R. Mariappan, and M. Prasath, Synthesis chemical methods for deposition of ZnO, CdO and CdZnO thin films to facilitate further research. J. Alloys Compd. 925, 166511 (2022).CrossRef
2.
go back to reference S.D. Eadi, H. Yan, P.S. Kumar, Y. Rathinam, and H.D. Lee, IGZO-decorated ZnO thin films and their application for gas sensing. Environ. Res. 214, 113796 (2022).CrossRef S.D. Eadi, H. Yan, P.S. Kumar, Y. Rathinam, and H.D. Lee, IGZO-decorated ZnO thin films and their application for gas sensing. Environ. Res. 214, 113796 (2022).CrossRef
3.
go back to reference S.X. Fan and W. Tang, Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators, B Chem. 362, 131789 (2022).CrossRef S.X. Fan and W. Tang, Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators, B Chem. 362, 131789 (2022).CrossRef
4.
go back to reference K. Gayathri, K. Ravichandran, M. Sridharan, S. Suvathi, R. Sriram, R. Mohan, and P. Sakthivel, Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: influence of effective Mo doping. Mater. Sci. Eng. B 298, 116849 (2023).CrossRef K. Gayathri, K. Ravichandran, M. Sridharan, S. Suvathi, R. Sriram, R. Mohan, and P. Sakthivel, Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: influence of effective Mo doping. Mater. Sci. Eng. B 298, 116849 (2023).CrossRef
5.
go back to reference S. Gupta, A. Knoepfel, H. Zou, Y. Ding, Investigations of methane gas sensor based on biasing operation of n-ZnO nanorods/p-Si assembled diode and Pd functionalized Schottky junctions. Sens. Actuators B: Chem., p. 134030 (2023). S. Gupta, A. Knoepfel, H. Zou, Y. Ding, Investigations of methane gas sensor based on biasing operation of n-ZnO nanorods/p-Si assembled diode and Pd functionalized Schottky junctions. Sens. Actuators B: Chem., p. 134030 (2023).
6.
go back to reference K.X. Han, C.C. Wu, W.F. Hsu, W. Chien, and C.F. Yang, Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly (3-hexylthiophene). Synth. Met. 299, 117449 (2023).CrossRef K.X. Han, C.C. Wu, W.F. Hsu, W. Chien, and C.F. Yang, Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly (3-hexylthiophene). Synth. Met. 299, 117449 (2023).CrossRef
7.
go back to reference K. Kasirajan, L.B. Chandrasekar, S. Maheswari, M. Karunakaran, and P.S. Sundaram, A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. 121, 111554 (2021).CrossRef K. Kasirajan, L.B. Chandrasekar, S. Maheswari, M. Karunakaran, and P.S. Sundaram, A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. 121, 111554 (2021).CrossRef
8.
go back to reference S. Kumar and T.T. John, Quick surface adsorption and sensing of ammonia at room temperature by In2S3 thin films. Appl. Surf. Sci. 620, 156816 (2023).CrossRef S. Kumar and T.T. John, Quick surface adsorption and sensing of ammonia at room temperature by In2S3 thin films. Appl. Surf. Sci. 620, 156816 (2023).CrossRef
9.
go back to reference S.D. Lokhande, M.B. Awale, G. Umadevi, and V.D. Mote, Effect of Ni doping on structural, optical and gas sensing properties of ZnO films for the development of acetone sensor devices. Mater. Chem. Phys. 301, 127667 (2023).CrossRef S.D. Lokhande, M.B. Awale, G. Umadevi, and V.D. Mote, Effect of Ni doping on structural, optical and gas sensing properties of ZnO films for the development of acetone sensor devices. Mater. Chem. Phys. 301, 127667 (2023).CrossRef
10.
go back to reference D. Mani, S.S. Manoharan, G.J. Arputhavalli, G. Sriram, and S. Jebasingh, A study on morphology dependent nanostructured ZnO thin films: an efficient gas sensing response for acetaldehyde. Inorg. Chem. Commun. 150, 110471 (2023).CrossRef D. Mani, S.S. Manoharan, G.J. Arputhavalli, G. Sriram, and S. Jebasingh, A study on morphology dependent nanostructured ZnO thin films: an efficient gas sensing response for acetaldehyde. Inorg. Chem. Commun. 150, 110471 (2023).CrossRef
11.
go back to reference T. Ravikumar, L. Thirumalaisamy, S. Madanagurusamy, and K. Sivaperuman, Substrate temperature dependent ammonia gas sensing performance of zinc ferrite thin films prepared by spray pyrolysis technique. J. Alloys Compd. 959, 170568 (2023).CrossRef T. Ravikumar, L. Thirumalaisamy, S. Madanagurusamy, and K. Sivaperuman, Substrate temperature dependent ammonia gas sensing performance of zinc ferrite thin films prepared by spray pyrolysis technique. J. Alloys Compd. 959, 170568 (2023).CrossRef
12.
go back to reference A. Raza, R. Abid, I. Murtaza, and T. Fan, Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in-situ solution polymerization. Ceram. Int. 49, 27050–27059 (2023).CrossRef A. Raza, R. Abid, I. Murtaza, and T. Fan, Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in-situ solution polymerization. Ceram. Int. 49, 27050–27059 (2023).CrossRef
13.
go back to reference P. Shankar, P. Srinivasan, B. Vutukuri, A.J. Kulandaisamy, G.K. Mani, K.J. Babu, and J.B.B. Rayappan, Boron induced c-axis growth and ammonia sensing signatures of spray pyrolysis deposited ZnO thin films–Relation between crystallinity and sensing. Thin Solid Films 746, 139126 (2022).CrossRef P. Shankar, P. Srinivasan, B. Vutukuri, A.J. Kulandaisamy, G.K. Mani, K.J. Babu, and J.B.B. Rayappan, Boron induced c-axis growth and ammonia sensing signatures of spray pyrolysis deposited ZnO thin films–Relation between crystallinity and sensing. Thin Solid Films 746, 139126 (2022).CrossRef
14.
go back to reference A.D. Sheikh, V.K. Vhanalakar, A.S. Katware, K.K. Pawar, and S.K. Kulkarni, Ultrasensitive organic-inorganic nanotube thin films of halogenated perovskites as room temperature ammonia sensors. J. Alloys Compd. 894, 162388 (2022).CrossRef A.D. Sheikh, V.K. Vhanalakar, A.S. Katware, K.K. Pawar, and S.K. Kulkarni, Ultrasensitive organic-inorganic nanotube thin films of halogenated perovskites as room temperature ammonia sensors. J. Alloys Compd. 894, 162388 (2022).CrossRef
15.
go back to reference S.R. Shinde and V.P. Shinde, Liquefied petroleum gas sensing performance of solochemically synthesized ZnO nanorods: role of precursors and fractal analysis. Sens. Actuators, A 345, 113800 (2022).CrossRef S.R. Shinde and V.P. Shinde, Liquefied petroleum gas sensing performance of solochemically synthesized ZnO nanorods: role of precursors and fractal analysis. Sens. Actuators, A 345, 113800 (2022).CrossRef
16.
go back to reference B. Soltabayev, A. Mentbayeva, and S. Acar, Enhanced gas sensing properties of in doped ZnO thin films. Mater. Today Proc. 49, 2495–2500 (2022).CrossRef B. Soltabayev, A. Mentbayeva, and S. Acar, Enhanced gas sensing properties of in doped ZnO thin films. Mater. Today Proc. 49, 2495–2500 (2022).CrossRef
17.
go back to reference S.R. Sriram, S.R. Parne, N. Pothukanuri, and D.R. Edla, Prospects of spray pyrolysis technique for gas sensor applications–A comprehensive review. J. Anal. Appl. Pyrol. 164, 105527 (2022).CrossRef S.R. Sriram, S.R. Parne, N. Pothukanuri, and D.R. Edla, Prospects of spray pyrolysis technique for gas sensor applications–A comprehensive review. J. Anal. Appl. Pyrol. 164, 105527 (2022).CrossRef
18.
go back to reference D.T.H. To, J.Y. Park, B. Yang, N.V. Myung, and Y.H. Choa, Nanocrystalline ZnO quantum dot-based chemiresistive gas sensors: improving sensing performance towards NO2 and H2S by optimizing operating temperature. Sens. Actuators Rep. 6, 100166 (2023).CrossRef D.T.H. To, J.Y. Park, B. Yang, N.V. Myung, and Y.H. Choa, Nanocrystalline ZnO quantum dot-based chemiresistive gas sensors: improving sensing performance towards NO2 and H2S by optimizing operating temperature. Sens. Actuators Rep. 6, 100166 (2023).CrossRef
19.
go back to reference A. Umar, A.A. Ibrahim, R. Kumar, H. Algadi, H. Albargi, M.A. Alsairi, and S. Akbar, CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ. Res. 200, 111377 (2021).CrossRef A. Umar, A.A. Ibrahim, R. Kumar, H. Algadi, H. Albargi, M.A. Alsairi, and S. Akbar, CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ. Res. 200, 111377 (2021).CrossRef
20.
go back to reference Y. Wang, C. Wang, Y. Xu, and Y. Sun, Novel ZnO/CdO heterostructure for high efficiency formaldehyde sensing with high response and low detection limit at low temperature. Mater. Res. Bull. 168, 112451 (2023).CrossRef Y. Wang, C. Wang, Y. Xu, and Y. Sun, Novel ZnO/CdO heterostructure for high efficiency formaldehyde sensing with high response and low detection limit at low temperature. Mater. Res. Bull. 168, 112451 (2023).CrossRef
21.
go back to reference H. Zhu, Z. Yuan, Y. Shen, C. Han, H. Ji, Z. Mu, and F. Meng, Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction. Sens. Actuators B Chem. 373, 132726 (2022).CrossRef H. Zhu, Z. Yuan, Y. Shen, C. Han, H. Ji, Z. Mu, and F. Meng, Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction. Sens. Actuators B Chem. 373, 132726 (2022).CrossRef
22.
go back to reference S. Brahma, P.C. Huang, B.W. Mwakikunga, V. Saasa, A.A. Akande, J.L. Huang, and C.P. Liu, Cd doped ZnO nanorods for efficient room temperature NH3 sensing. Mater. Chem. Phys. 294, 127053 (2023).CrossRef S. Brahma, P.C. Huang, B.W. Mwakikunga, V. Saasa, A.A. Akande, J.L. Huang, and C.P. Liu, Cd doped ZnO nanorods for efficient room temperature NH3 sensing. Mater. Chem. Phys. 294, 127053 (2023).CrossRef
23.
go back to reference B. Amudhavalli, M. Prasath, and R. Mariappan, Recent development of low cost nebulizer sprayed Cd1-xZnxO nanoparticles. Solid State Commun. 341, 114544 (2022).CrossRef B. Amudhavalli, M. Prasath, and R. Mariappan, Recent development of low cost nebulizer sprayed Cd1-xZnxO nanoparticles. Solid State Commun. 341, 114544 (2022).CrossRef
24.
go back to reference A.K. Sharma, S.S. Potdar, K.S. Pakhare, U.M. Patil, V.S. Patil, and M.C. Naik, Nanostructured CdO–ZnO composite thin films for sensing application. J. Mater. Sci.: Mater. Electron. 31, 20932–20944 (2020). A.K. Sharma, S.S. Potdar, K.S. Pakhare, U.M. Patil, V.S. Patil, and M.C. Naik, Nanostructured CdO–ZnO composite thin films for sensing application. J. Mater. Sci.: Mater. Electron. 31, 20932–20944 (2020).
25.
go back to reference M.R. Das and P. Mitra, SILAR-synthesized CdO thin films for improved supercapacitive, photocatalytic and LPG-sensing performance. Chem. Pap. 73, 1605–1619 (2019).CrossRef M.R. Das and P. Mitra, SILAR-synthesized CdO thin films for improved supercapacitive, photocatalytic and LPG-sensing performance. Chem. Pap. 73, 1605–1619 (2019).CrossRef
26.
go back to reference R. Mariappan, V. Ponnuswamy, and P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52(3), 500–513 (2012).CrossRef R. Mariappan, V. Ponnuswamy, and P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52(3), 500–513 (2012).CrossRef
27.
go back to reference R. Mariappan, V. Ponnuswamy, S.M. Mohan, P. Suresh, and R. Suresh, The effect of potential on electrodeposited CdSe thin films. Mater. Sci. Semicond. Process. 15(2), 174–180 (2012).CrossRef R. Mariappan, V. Ponnuswamy, S.M. Mohan, P. Suresh, and R. Suresh, The effect of potential on electrodeposited CdSe thin films. Mater. Sci. Semicond. Process. 15(2), 174–180 (2012).CrossRef
28.
go back to reference A.K. Sharma, S.S. Potdar, K.S. Pakhare, B.M. Sargar, M.V. Rokade, and N.L. Tarwal, The selective ethanol gas sensing performance of CdO1−XZnOX nanocomposite. J. Mater. Sci.: Mater. Electron. 28, 3752–3761 (2017). A.K. Sharma, S.S. Potdar, K.S. Pakhare, B.M. Sargar, M.V. Rokade, and N.L. Tarwal, The selective ethanol gas sensing performance of CdO1−XZnOX nanocomposite. J. Mater. Sci.: Mater. Electron. 28, 3752–3761 (2017).
29.
go back to reference B. Altun, E.I. Karaduman, A.O. Cagrtekin, A. Ajjaq, F. Sarf, and S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A 127(9), 687 (2021).CrossRef B. Altun, E.I. Karaduman, A.O. Cagrtekin, A. Ajjaq, F. Sarf, and S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A 127(9), 687 (2021).CrossRef
30.
go back to reference M. Sathya, G. Selvan, K. Kasirajan, S. Usha, P. Baskaran, and M. Karunakaran, Effect of zirconium doping on ZnO nanostructured thin films and the enhanced ammonia gas sensing activity. J. Mater. Sci.: Mater. Electron. 33(1), 443–457 (2022). M. Sathya, G. Selvan, K. Kasirajan, S. Usha, P. Baskaran, and M. Karunakaran, Effect of zirconium doping on ZnO nanostructured thin films and the enhanced ammonia gas sensing activity. J. Mater. Sci.: Mater. Electron. 33(1), 443–457 (2022).
31.
go back to reference K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, A.A. El-Rehim, H.Y. Zahran, and S. AlFaify, Enhanced room temperature ammonia gas sensing properties of Al-doped ZnO nanostructured thin films. Opt. Quant. Electron. 52, 1–19 (2020).CrossRef K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, A.A. El-Rehim, H.Y. Zahran, and S. AlFaify, Enhanced room temperature ammonia gas sensing properties of Al-doped ZnO nanostructured thin films. Opt. Quant. Electron. 52, 1–19 (2020).CrossRef
32.
go back to reference S.D. Lokhande, M.B. Awale, and V.D. Mote, Optical and gas sensing properties of Cu-doped ZnO nanocrystalline thin films for sensor applications. J. Mater. Sci.: Mater. Electron. 33(33), 25063–25077 (2022). S.D. Lokhande, M.B. Awale, and V.D. Mote, Optical and gas sensing properties of Cu-doped ZnO nanocrystalline thin films for sensor applications. J. Mater. Sci.: Mater. Electron. 33(33), 25063–25077 (2022).
33.
go back to reference S. Goudarzi and K. Khojier, Role of substrate temperature on the ammonia gas sensing performance of Mg-doped ZnO thin films deposited by spray pyrolysis technique: application in breath analysis devices. Appl. Phys. A 124(9), 601 (2018).CrossRef S. Goudarzi and K. Khojier, Role of substrate temperature on the ammonia gas sensing performance of Mg-doped ZnO thin films deposited by spray pyrolysis technique: application in breath analysis devices. Appl. Phys. A 124(9), 601 (2018).CrossRef
34.
go back to reference Y. Bai, X. Dong, C. Guo, Y. Xu, B. Wang, and X. Cheng, Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature. Front. Mater. Sci. 16(4), 220620 (2022).CrossRef Y. Bai, X. Dong, C. Guo, Y. Xu, B. Wang, and X. Cheng, Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature. Front. Mater. Sci. 16(4), 220620 (2022).CrossRef
35.
go back to reference S. Fairose, S. Ernest, and S. Daniel, Effect of oxygen sputter pressure on the structural, morphological and optical properties of ZnO thin films for gas sensing application. Sens. Imaging 19, 1–18 (2018).CrossRef S. Fairose, S. Ernest, and S. Daniel, Effect of oxygen sputter pressure on the structural, morphological and optical properties of ZnO thin films for gas sensing application. Sens. Imaging 19, 1–18 (2018).CrossRef
36.
go back to reference A.P.S. Gahlot, A. Paliwal, and A. Kapoor, Theoretical and experimental investigation on SPR gas sensor based on ZnO/polypyrrole interface for ammonia sensing applications. Plasmonics 17(4), 1619–1632 (2022).CrossRef A.P.S. Gahlot, A. Paliwal, and A. Kapoor, Theoretical and experimental investigation on SPR gas sensor based on ZnO/polypyrrole interface for ammonia sensing applications. Plasmonics 17(4), 1619–1632 (2022).CrossRef
37.
go back to reference G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci.: Mater. Electron. 31, 10366–10380 (2020). G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci.: Mater. Electron. 31, 10366–10380 (2020).
38.
go back to reference F. Sarf, E.I. Karaduman, E. Yakar, and S. Acar, The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH 3 gas sensing performances at room temperature. J. Mater. Sci. Mater. Electron. 31, 10084–10095 (2020).CrossRef F. Sarf, E.I. Karaduman, E. Yakar, and S. Acar, The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH 3 gas sensing performances at room temperature. J. Mater. Sci. Mater. Electron. 31, 10084–10095 (2020).CrossRef
39.
go back to reference E. Vinoth, S. Gowrishankar, and N. Gopalakrishnan, Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films. Appl. Phys. A 124, 1–8 (2018).CrossRef E. Vinoth, S. Gowrishankar, and N. Gopalakrishnan, Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films. Appl. Phys. A 124, 1–8 (2018).CrossRef
40.
go back to reference V. Adimule, M.G. Revaigh, and H.J. Adarsha, Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J. Mater. Eng. Perform. 29, 4586–4596 (2020).CrossRef V. Adimule, M.G. Revaigh, and H.J. Adarsha, Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J. Mater. Eng. Perform. 29, 4586–4596 (2020).CrossRef
41.
go back to reference M. Rajendra Prasad, M. Haris, and M. Sridharan, Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 11367–11373 (2017).CrossRef M. Rajendra Prasad, M. Haris, and M. Sridharan, Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 11367–11373 (2017).CrossRef
42.
go back to reference M. Rajendra Prasad, M. Haris, and M. Sridharan, Investigation on structural, morphological, optical and ammonia sensing properties indium doped nano crystalline ZnO thin films synthesized by spray pyrolysis technique. Sens. Imaging 19, 1–14 (2018).CrossRef M. Rajendra Prasad, M. Haris, and M. Sridharan, Investigation on structural, morphological, optical and ammonia sensing properties indium doped nano crystalline ZnO thin films synthesized by spray pyrolysis technique. Sens. Imaging 19, 1–14 (2018).CrossRef
43.
go back to reference R. Mariappan, V. Ponnuswamy, P. Suresh, N. Ashok, P. Jayamurugan, and A.C. Bose, Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications. Superlattices Microstruct. 71, 238–249 (2014).CrossRef R. Mariappan, V. Ponnuswamy, P. Suresh, N. Ashok, P. Jayamurugan, and A.C. Bose, Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications. Superlattices Microstruct. 71, 238–249 (2014).CrossRef
44.
go back to reference F. Ozutok, I. Karaduman, S. Demiri, and Acar, Influence of different aluminum sources on the NH 3 gas-sensing properties of ZnO thin films. J. Electron. Mater. 47, 2648–2657 (2018).CrossRef F. Ozutok, I. Karaduman, S. Demiri, and Acar, Influence of different aluminum sources on the NH 3 gas-sensing properties of ZnO thin films. J. Electron. Mater. 47, 2648–2657 (2018).CrossRef
45.
go back to reference R. Mariappan, S. Dinagaran, P. Srinivasan, and S. Vijayakumar, Electrical impedance analysis of ZnO thin films for ammonia gas sensors. Indian J. Chem. Technol. 30(4), 483–491 (2023). R. Mariappan, S. Dinagaran, P. Srinivasan, and S. Vijayakumar, Electrical impedance analysis of ZnO thin films for ammonia gas sensors. Indian J. Chem. Technol. 30(4), 483–491 (2023).
Metadata
Title
Comparative Analysis of Highly Sensitive Ammonia Gas Sensors Based on ZnO, CdO, and CdZnO Thin Films
Authors
B. Amudhavalli
R. Mariappan
M. Prasath
Publication date
15-11-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10800-4

Other articles of this Issue 1/2024

Journal of Electronic Materials 1/2024 Go to the issue