Skip to main content
Top
Published in: Journal of Electronic Materials 7/2021

16-04-2021 | Original Research Article

Effect of Size Fractionation on Purity, Thermal Stability and Electrical Properties of Natural Hematite

Authors: Saheli Ghosh, Shubham Roy, Souravi Bardhan, Nibedita Khatua, Barsha Bhowal, Dipak K. Chanda, Solanky Das, Dhananjoy Mondal, Ruma Basu, Sukhen Das

Published in: Journal of Electronic Materials | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study describes the variation of grain size of natural hematite (α-Fe2O3) from bulk to nano-scale, owing to fractionation by ball milling and also the change in vital electrical properties of the products with respect to their bulk counterpart. Hematite, an important iron ore, is present in abundance in the deposits of most parts of the world. This fact was the rationale behind the selection of this mineral for the study. A gradual decrease in size via top-down synthesis technique was confirmed and the morphological parameters of the materials were analyzed using field emission scanning electron microscopy (FESEM) and corresponding pore diameter and surface area were determined by BET-BJH analysis. The studies were performed on three size fractions, namely, S1 (bulk mineral), S2 (bulk mineral, ball milled for 3 h) and S3 (bulk mineral, ball milled for 12 h). The purities of the natural mineral and its fractionated end products were estimated by using x-ray diffraction (XRD) and x-ray fluorescence (XRF) techniques. Increase in purity with decline in the particle size, especially in the nano-domain, was observed. The changes in dielectric properties of the materials with varying temperature were studied. Temperature dependence of the dielectric constant and ac conductivity were recorded, which indicated a remarkable augmentation in dielectric permittivity with reduction in size of the material. High dielectric constants of the smaller sized materials (S2 and S3) at low frequency signified their potential use in energy storage devices. Thus, using an easily available natural mineral as the starting material, an efficient energy storage appliance can be devised with a low-cost substance, synthesized by the simple approach of fractionation without employing any chemicals.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference N.A. Hoque, P. Thakur, P. Biswas, M.M. Saikh, S. Roy, B. Bagchi, S. Das, and P.P. Ray, J. Mater. Chem. A 6, 13848 (2018).CrossRef N.A. Hoque, P. Thakur, P. Biswas, M.M. Saikh, S. Roy, B. Bagchi, S. Das, and P.P. Ray, J. Mater. Chem. A 6, 13848 (2018).CrossRef
3.
5.
go back to reference K.A. Homan, J. Shah, S. Gomez, H. Gensler, A.B. Karpiouk, L. Brannon-Peppas, and S.Y. Emelianov, J. Biomed Opt. 15, 021316 (2010).CrossRef K.A. Homan, J. Shah, S. Gomez, H. Gensler, A.B. Karpiouk, L. Brannon-Peppas, and S.Y. Emelianov, J. Biomed Opt. 15, 021316 (2010).CrossRef
7.
go back to reference A.V. Anupama, W. Keune, and B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017).CrossRef A.V. Anupama, W. Keune, and B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017).CrossRef
8.
go back to reference Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, and Y. Kuang, Diam. Relat. Mater. 15, 1478 (2006).CrossRef Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, and Y. Kuang, Diam. Relat. Mater. 15, 1478 (2006).CrossRef
9.
go back to reference Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, and Z.L. Wang, AngewChem. Int. 52, 5065 (2013).CrossRef Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, and Z.L. Wang, AngewChem. Int. 52, 5065 (2013).CrossRef
10.
go back to reference A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, I. Cantero, I. De Meatza, M. Holzapfel, and N. Tran, J. Power Sources 196, 9719 (2011).CrossRef A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, I. Cantero, I. De Meatza, M. Holzapfel, and N. Tran, J. Power Sources 196, 9719 (2011).CrossRef
11.
go back to reference M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang, Nano Lett. 9, 1223 (2009).CrossRef M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang, Nano Lett. 9, 1223 (2009).CrossRef
12.
13.
go back to reference A.E. Mahmoud, H.S. Wasly, and M.A. Doheim, J. Eng. Sci. 42, 1430 (2014). A.E. Mahmoud, H.S. Wasly, and M.A. Doheim, J. Eng. Sci. 42, 1430 (2014).
14.
go back to reference M. Ujihara, G.P. Carman, and D.G. Lee, Appl. Phys. Lett. 91, 093508 (2007).CrossRef M. Ujihara, G.P. Carman, and D.G. Lee, Appl. Phys. Lett. 91, 093508 (2007).CrossRef
15.
go back to reference E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, J. Intell. Mater. Syst. Struct. 16, 865 (2005).CrossRef E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, J. Intell. Mater. Syst. Struct. 16, 865 (2005).CrossRef
16.
go back to reference W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, and T. Jing, ACS Nano 6, 6231 (2012).CrossRef W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, and T. Jing, ACS Nano 6, 6231 (2012).CrossRef
17.
go back to reference C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, and N.M. Huang, Int. J. Energy Res. 39, 344 (2015).CrossRef C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, and N.M. Huang, Int. J. Energy Res. 39, 344 (2015).CrossRef
19.
go back to reference P. Robinson, R.J. Harrison, S.A. McEnroe, and R.B. Hargraves, Am. Min. 89, 725 (2004).CrossRef P. Robinson, R.J. Harrison, S.A. McEnroe, and R.B. Hargraves, Am. Min. 89, 725 (2004).CrossRef
20.
21.
go back to reference T.P. Raming, A.J. Winnubst, C.M. van Kats, and A.P. Philipse, J. Colloid Interface Sci. 249, 346 (2002).CrossRef T.P. Raming, A.J. Winnubst, C.M. van Kats, and A.P. Philipse, J. Colloid Interface Sci. 249, 346 (2002).CrossRef
22.
go back to reference H. Nagar, N.V. Kulkarni, S. Karmakar, B. Sahoo, I. Banerjee, P.S. Chaudhari, R. Pasricha, A.K. Das, S.V. Bhoraskar, S.K. Date, and W. Keune, Mater. Charact. 59, 1215 (2008).CrossRef H. Nagar, N.V. Kulkarni, S. Karmakar, B. Sahoo, I. Banerjee, P.S. Chaudhari, R. Pasricha, A.K. Das, S.V. Bhoraskar, S.K. Date, and W. Keune, Mater. Charact. 59, 1215 (2008).CrossRef
23.
go back to reference J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, and W. Zheng, ACS Nano 3, 3749 (2009).CrossRef J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, and W. Zheng, ACS Nano 3, 3749 (2009).CrossRef
24.
go back to reference M. Manjunatha, R. Kumar, A.V. Anupama, V.B. Khopkar, R. Damle, K.P. Rameshand, and B. Sahoo, J. Mater. Res. Technol. 8, 2192 (2019).CrossRef M. Manjunatha, R. Kumar, A.V. Anupama, V.B. Khopkar, R. Damle, K.P. Rameshand, and B. Sahoo, J. Mater. Res. Technol. 8, 2192 (2019).CrossRef
27.
go back to reference A.A. Bunaciu, E.G. UdriŞTioiu, and H.Y. Aboul-Enein, Crit. Rev. Anal. Chem. 45, 289 (2015).CrossRef A.A. Bunaciu, E.G. UdriŞTioiu, and H.Y. Aboul-Enein, Crit. Rev. Anal. Chem. 45, 289 (2015).CrossRef
28.
go back to reference A. Chauhan and P. Chauhan, J. Anal. Bioanal. Tech. 5, 1 (2014). A. Chauhan and P. Chauhan, J. Anal. Bioanal. Tech. 5, 1 (2014).
29.
go back to reference J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10, 457 (1938).CrossRef J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10, 457 (1938).CrossRef
31.
go back to reference H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., (Hoboken: Wiley-VCH, 1974), p. 992. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., (Hoboken: Wiley-VCH, 1974), p. 992.
33.
go back to reference H. Chen, Y. Chen, J. Yu, and J.S. Williams, Chem. Phys. Lett. 425, 315 (2006).CrossRef H. Chen, Y. Chen, J. Yu, and J.S. Williams, Chem. Phys. Lett. 425, 315 (2006).CrossRef
34.
go back to reference S. Singh, M.U. Aswath, R.D. Biswas, R.V. Ranganath, H.K. Choudhary, R. Kumar, and B. Sahoo, Case Stud. Constr. Mater. 11, e00266 (2019). S. Singh, M.U. Aswath, R.D. Biswas, R.V. Ranganath, H.K. Choudhary, R. Kumar, and B. Sahoo, Case Stud. Constr. Mater. 11, e00266 (2019).
36.
37.
38.
go back to reference J. Bhaskar Saikia, G. Parthasarathy, R.R. Borah, and R. Borthakur, Int. J. Earth Sci. 7, 873 (2016). J. Bhaskar Saikia, G. Parthasarathy, R.R. Borah, and R. Borthakur, Int. J. Earth Sci. 7, 873 (2016).
39.
40.
go back to reference B.J. Saikia, G. Parthasarathy, and N.C. Sarmah, Nat. Sci. 7, 45 (2009). B.J. Saikia, G. Parthasarathy, and N.C. Sarmah, Nat. Sci. 7, 45 (2009).
41.
go back to reference B.J. Saikia, G. Parthasarathy, N.C. Sarmah, and G.D. Baruah, Bull. Mater. Sci. 31, 155 (2008).CrossRef B.J. Saikia, G. Parthasarathy, N.C. Sarmah, and G.D. Baruah, Bull. Mater. Sci. 31, 155 (2008).CrossRef
42.
go back to reference Z.L.L. Yeung, R.C.W. Kwok, and K.N. Yu, Appl. Radiat. Isot. 58, 339 (2003).CrossRef Z.L.L. Yeung, R.C.W. Kwok, and K.N. Yu, Appl. Radiat. Isot. 58, 339 (2003).CrossRef
43.
go back to reference S. Roy, A. Maity, P. Mandal, D.K. Chanda, K. Pal, S. Bardhan, and S. Das, Cryst. Eng. Commun. 20, 6338 (2018).CrossRef S. Roy, A. Maity, P. Mandal, D.K. Chanda, K. Pal, S. Bardhan, and S. Das, Cryst. Eng. Commun. 20, 6338 (2018).CrossRef
44.
go back to reference D.K. Chanda, P.S. Das, A. Samanta, A. Dey, A.K. Mandal, K.D. Gupta, T. Maitya, and A.K. Mukhopadhyay, Ceram. Int. 40, 11411 (2014).CrossRef D.K. Chanda, P.S. Das, A. Samanta, A. Dey, A.K. Mandal, K.D. Gupta, T. Maitya, and A.K. Mukhopadhyay, Ceram. Int. 40, 11411 (2014).CrossRef
45.
go back to reference D.K. Chanda, A. Samanta, A. Dey, P.S. Das, and A.K. Mukhopadhyay, J. Mater. Sci 52, 4910 (2017).CrossRef D.K. Chanda, A. Samanta, A. Dey, P.S. Das, and A.K. Mukhopadhyay, J. Mater. Sci 52, 4910 (2017).CrossRef
46.
go back to reference S. Roy, S. Bardhan, K. Pal, S. Ghosh, P. Mandal, S. Das, and S. Das, J. Alloys Compd. 763, 749 (2018).CrossRef S. Roy, S. Bardhan, K. Pal, S. Ghosh, P. Mandal, S. Das, and S. Das, J. Alloys Compd. 763, 749 (2018).CrossRef
47.
go back to reference S. Roy, S. Bardhan, D.K. Chanda, A. Maity, S. Ghosh, D. Mondal, S. Singh, and S. Das, Mater. Res. Express 7, 025020 (2020).CrossRef S. Roy, S. Bardhan, D.K. Chanda, A. Maity, S. Ghosh, D. Mondal, S. Singh, and S. Das, Mater. Res. Express 7, 025020 (2020).CrossRef
48.
go back to reference S. Das, S. Das, A. Roychowdhury, D. Das, and S. Sutradhar, J. Alloys Compd. 708, 231 (2017).CrossRef S. Das, S. Das, A. Roychowdhury, D. Das, and S. Sutradhar, J. Alloys Compd. 708, 231 (2017).CrossRef
49.
go back to reference S. Bardhan, S. Roy, D.K. Chanda, S. Das, K. Pal, A. Chakraborty, R. Basu, and S. Das, Cryst. Growth Des. 19, 4588 (2019).CrossRef S. Bardhan, S. Roy, D.K. Chanda, S. Das, K. Pal, A. Chakraborty, R. Basu, and S. Das, Cryst. Growth Des. 19, 4588 (2019).CrossRef
52.
go back to reference S. Ganguly, K. Halder, N. Haque, S. Das, and S. Dastidar, Am. J. Res. Commun. 3, 68 (2015). S. Ganguly, K. Halder, N. Haque, S. Das, and S. Dastidar, Am. J. Res. Commun. 3, 68 (2015).
53.
go back to reference P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, and P. Nandy, RSC Adv. 5, 62819 (2015).CrossRef P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, and P. Nandy, RSC Adv. 5, 62819 (2015).CrossRef
55.
go back to reference L.K. Sudha, S. Roy, and K.U. Rao, Int. J. Mater. Mech. Manuf. 2, 96 (2014). L.K. Sudha, S. Roy, and K.U. Rao, Int. J. Mater. Mech. Manuf. 2, 96 (2014).
Metadata
Title
Effect of Size Fractionation on Purity, Thermal Stability and Electrical Properties of Natural Hematite
Authors
Saheli Ghosh
Shubham Roy
Souravi Bardhan
Nibedita Khatua
Barsha Bhowal
Dipak K. Chanda
Solanky Das
Dhananjoy Mondal
Ruma Basu
Sukhen Das
Publication date
16-04-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 7/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08878-9

Other articles of this Issue 7/2021

Journal of Electronic Materials 7/2021 Go to the issue