Skip to main content
Top
Published in: Journal of Electronic Materials 7/2021

29-04-2021 | Original Research Article

Low-Temperature Planar Oxygen Generator with (Bi1.50Y0.50)0.98Zr0.04O3+δ/Bi1.71Nb0.25Ba0.04O3+δ Dual-Layer Electrolyte Membrane

Authors: Jeng-Ting Tsai, Sea-Fue Wang, Yung-Fu Hsu

Published in: Journal of Electronic Materials | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a low-temperature planar solid electrolyte oxygen generator (SEOG) based on a (Bi1.50Y0.50)0.98Zr0.04O3+δ (BYO)/Bi1.71Nb0.25Ba0.04O3+δ (BBNO) dual-layer electrolyte membrane was developed. The SEOG device consisted of a Ag (10 µm)/BBNO (13 µm)/BYO (710 µm)/BBNO (13 µm)/Ag (10 µm) cell sandwiched between a pair of modular planar SUS 316 interconnects with a web-type gas flow channel using a ZnO-SiO2-Al2O3 glass sealant. The BYO layer had high oxygen-ion conductivity at low temperatures, while the BBNO layer provided good adhesion to the high-fire Ag electrode. The leakage value of the SEOG device tested at an operating temperature of 550°C was less than 0.005 (standard cubic centimeters per minute) sccm/cm. The device had excellent hermetic performance and mechanical integrity, thereby verifying the feasibility of the SEOG configuration. The oxygen flux produced by the SEOG device linearly increased with current density, reaching 0.72 cm/min at a current density of 0.20 A/cm2, slightly deviated from the Faraday relation at 0.25 A/cm2, and then began to level off beyond 0.25 A/cm2. The Faradaic efficiency of the device was 96.3% at up to 0.20 A/cm2 and dropped rapidly to 66.6% at 0.37 A/cm2. The rapid degradation of the oxygen production at high current density was caused by the reduction of the BYO/BBNO electrolyte and the concentration polarization at the electrodes. As the applied voltage driving the current density was higher than the BYO/BBNO decomposition voltage of 0.58 V at 550°C, it triggered the instability of the Ag/BBNO/BYO/BBNO/Ag cell and thus, that of the SEOG device.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.K. Stoller, R.J. Panos, S. Krachman, D.E. Doherty, and B. Make, Chest 138, 179 (2010).CrossRef J.K. Stoller, R.J. Panos, S. Krachman, D.E. Doherty, and B. Make, Chest 138, 179 (2010).CrossRef
3.
5.
go back to reference A. Spirin, A. Lipilin, V. Ivanov, S. Paranin, A. Nikonov, V. Khrustov, D. Portnov, N. Gavrilov, and A. Mamaev, Adv. Sci. Technol. 65, 257 (2010).CrossRef A. Spirin, A. Lipilin, V. Ivanov, S. Paranin, A. Nikonov, V. Khrustov, D. Portnov, N. Gavrilov, and A. Mamaev, Adv. Sci. Technol. 65, 257 (2010).CrossRef
6.
go back to reference A.V. Spirin, A.V. Nikonov, A.S. Lipilin, S.N. Paranin, V.V. Ivanov, V.R. Khrustov, A.V. Valentsev, and V.I. Krutikov, Russ. J. Electrochem. 47, 569 (2011).CrossRef A.V. Spirin, A.V. Nikonov, A.S. Lipilin, S.N. Paranin, V.V. Ivanov, V.R. Khrustov, A.V. Valentsev, and V.I. Krutikov, Russ. J. Electrochem. 47, 569 (2011).CrossRef
7.
8.
go back to reference D.W. Joh, J.H. Park, D. Kim, E.D. Wachsman, K.T. Lee, and A.C.S. Appl, Mater. Interfaces 9, 8443 (2017).CrossRef D.W. Joh, J.H. Park, D. Kim, E.D. Wachsman, K.T. Lee, and A.C.S. Appl, Mater. Interfaces 9, 8443 (2017).CrossRef
9.
10.
11.
12.
13.
go back to reference T. Hong, S. Fang, M. Zhao, F. Chen, H. Zhang, S. Wang, and K.S. Brinkman, J. Electrochem. Soc. 164, F347 (2017).CrossRef T. Hong, S. Fang, M. Zhao, F. Chen, H. Zhang, S. Wang, and K.S. Brinkman, J. Electrochem. Soc. 164, F347 (2017).CrossRef
14.
go back to reference Y.W. Chen, Y.X. Liu, S.F. Wang, and R. Devasenathipathy, J. Electron. Mater. 47, 3639 (2018).CrossRef Y.W. Chen, Y.X. Liu, S.F. Wang, and R. Devasenathipathy, J. Electron. Mater. 47, 3639 (2018).CrossRef
15.
17.
go back to reference S.F. Wang, Y.R. Wang, Y.F. Hsu, and C.C. Chuang, Int. J. Hydrogen Energy 34, 8235 (2009).CrossRef S.F. Wang, Y.R. Wang, Y.F. Hsu, and C.C. Chuang, Int. J. Hydrogen Energy 34, 8235 (2009).CrossRef
18.
go back to reference S. Gandavarapu, E. Sabolsky, K. Sabolsky, and K. Gerdes, Int. J. Appl. Ceram. Technol. 12, 199 (2015).CrossRef S. Gandavarapu, E. Sabolsky, K. Sabolsky, and K. Gerdes, Int. J. Appl. Ceram. Technol. 12, 199 (2015).CrossRef
19.
go back to reference S.F. Wang, Y.F. Hsu, W.C. Tsai, and H.C. Lu, J. Power Sources 218, 106 (2012).CrossRef S.F. Wang, Y.F. Hsu, W.C. Tsai, and H.C. Lu, J. Power Sources 218, 106 (2012).CrossRef
20.
21.
go back to reference H. Kruidhof, K. Seshan, G.M.H. van de Velde, K.J. de V ries, and A.J. Burggraaf, Mater. Res. Bull. 23, 371 (1988).CrossRef H. Kruidhof, K. Seshan, G.M.H. van de Velde, K.J. de V ries, and A.J. Burggraaf, Mater. Res. Bull. 23, 371 (1988).CrossRef
22.
go back to reference E.P. Murray, T. Tsai, and S.A. Barnett, Solid State Ionics 110, 235 (1998).CrossRef E.P. Murray, T. Tsai, and S.A. Barnett, Solid State Ionics 110, 235 (1998).CrossRef
23.
24.
go back to reference W. Guo, J. Liu, C. Jin, H. Gao, and Y. Zhang, J. Alloys Compd. 473, 43 (2009).CrossRef W. Guo, J. Liu, C. Jin, H. Gao, and Y. Zhang, J. Alloys Compd. 473, 43 (2009).CrossRef
25.
26.
go back to reference H.T. Cahen, M.J. Verkerk, and G.H.J. Broers, Electrochim. Acta 23, 885 (1978).CrossRef H.T. Cahen, M.J. Verkerk, and G.H.J. Broers, Electrochim. Acta 23, 885 (1978).CrossRef
27.
go back to reference W. Zhou, Z. Shao, R. Ran, Z. Chen, P. Zeng, H. Gu, W. Jin, and N. Xu, Electrochim. Acta 52, 6297 (2007).CrossRef W. Zhou, Z. Shao, R. Ran, Z. Chen, P. Zeng, H. Gu, W. Jin, and N. Xu, Electrochim. Acta 52, 6297 (2007).CrossRef
28.
go back to reference T. Takahashi, T. Esaka, and H. Iwahara, J. Appl. Electrochem. 7, 299 (1977).CrossRef T. Takahashi, T. Esaka, and H. Iwahara, J. Appl. Electrochem. 7, 299 (1977).CrossRef
Metadata
Title
Low-Temperature Planar Oxygen Generator with (Bi1.50Y0.50)0.98Zr0.04O3+δ/Bi1.71Nb0.25Ba0.04O3+δ Dual-Layer Electrolyte Membrane
Authors
Jeng-Ting Tsai
Sea-Fue Wang
Yung-Fu Hsu
Publication date
29-04-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 7/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08874-z

Other articles of this Issue 7/2021

Journal of Electronic Materials 7/2021 Go to the issue