Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2014

01-04-2014

Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

Authors: Min Zhu, Cuiwei Du, Xiaogang Li, Zhiyong Liu, Shengrong Wang, Tianliang Zhao, Jinghuan Jia

Published in: Journal of Materials Engineering and Performance | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence, Acta. Mater., 2007, 55(1), p 29–42CrossRef G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence, Acta. Mater., 2007, 55(1), p 29–42CrossRef
2.
go back to reference G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Pre-cracked X70 Pipeline Steel in a Concentrated Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52, p 960–968CrossRef G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Pre-cracked X70 Pipeline Steel in a Concentrated Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52, p 960–968CrossRef
3.
go back to reference A. Mustapha, E.A. Charles, and D. Hardie, Evaluation of Environment-Assisted Cracking Susceptibility of a Grade X100 Pipeline Steel, Corros. Sci., 2012, 54, p 5–9CrossRef A. Mustapha, E.A. Charles, and D. Hardie, Evaluation of Environment-Assisted Cracking Susceptibility of a Grade X100 Pipeline Steel, Corros. Sci., 2012, 54, p 5–9CrossRef
4.
go back to reference A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical Impedance Spectroscopy Analysis of X70 Pipeline Steel Stress Corrosion Cracking in High pH Carbonate Solution, Corros. Sci., 2012, 61, p 111–122CrossRef A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical Impedance Spectroscopy Analysis of X70 Pipeline Steel Stress Corrosion Cracking in High pH Carbonate Solution, Corros. Sci., 2012, 61, p 111–122CrossRef
5.
go back to reference M.A. Aran and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2011, 528, p 4927–4940CrossRef M.A. Aran and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2011, 528, p 4927–4940CrossRef
6.
go back to reference Y.W. Kang, W.X. Chen, R. Kania, G.V. Boven, and R. Worthingham, Simulation of Crack Growth During Hydrostatic Testing of Pipeline Steel in Near-Neutral pH Environment, Corros. Sci., 2011, 53, p 968–975CrossRef Y.W. Kang, W.X. Chen, R. Kania, G.V. Boven, and R. Worthingham, Simulation of Crack Growth During Hydrostatic Testing of Pipeline Steel in Near-Neutral pH Environment, Corros. Sci., 2011, 53, p 968–975CrossRef
7.
go back to reference B.T. Lu, J.L. Luo, and P.R. Norton, Environmentally Assisted Cracking Mechanism of Pipeline Steel in Near-Neutral pH Groundwater, Corros. Sci., 2010, 52, p 1787–1795CrossRef B.T. Lu, J.L. Luo, and P.R. Norton, Environmentally Assisted Cracking Mechanism of Pipeline Steel in Near-Neutral pH Groundwater, Corros. Sci., 2010, 52, p 1787–1795CrossRef
8.
go back to reference E. SadeghiMeresht, T. ShahrabiFarahani, and J. Neshati, Failure Analysis of Stress Corrosion Cracking Occurred in A Gas Transmission Steel Pipeline, Eng. Fail. Anal., 2011, 18, p 963–970CrossRef E. SadeghiMeresht, T. ShahrabiFarahani, and J. Neshati, Failure Analysis of Stress Corrosion Cracking Occurred in A Gas Transmission Steel Pipeline, Eng. Fail. Anal., 2011, 18, p 963–970CrossRef
9.
go back to reference T.R. Jack, B. Erno, K. Krist, and R. Fessler, Generation of Near Neutral pH and High pH SCC Environments on Buried Pipelines, Proceedings of Corrosion 2000. Paper 00362. NACE International, Houston, TX, 2000 (Corrosion 2000. Paper No. 363, NACE, Houston, 2000) T.R. Jack, B. Erno, K. Krist, and R. Fessler, Generation of Near Neutral pH and High pH SCC Environments on Buried Pipelines, Proceedings of Corrosion 2000. Paper 00362. NACE International, Houston, TX, 2000 (Corrosion 2000. Paper No. 363, NACE, Houston, 2000)
10.
go back to reference C. Manfredi and J.L. Otegui, Failure by SCC in Buried Pipelines, Eng. Fail. Anal., 2002, 9, p 495–509CrossRef C. Manfredi and J.L. Otegui, Failure by SCC in Buried Pipelines, Eng. Fail. Anal., 2002, 9, p 495–509CrossRef
11.
go back to reference M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51, p p119–p128CrossRef M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51, p p119–p128CrossRef
12.
go back to reference R.N. Parkins, Jr., E.K. Blanchard, and E.S. Delanty, Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH, Corrosion, 1994, 50(5), p 394–408CrossRef R.N. Parkins, Jr., E.K. Blanchard, and E.S. Delanty, Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH, Corrosion, 1994, 50(5), p 394–408CrossRef
13.
go back to reference W. Chen, F. King, and E. Vokes, Characteristics of Near-Neutral-pH Stress Corrosion Cracks in An X-65 Pipeline, Corrosion, 2002, 58(3), p 267–275CrossRef W. Chen, F. King, and E. Vokes, Characteristics of Near-Neutral-pH Stress Corrosion Cracks in An X-65 Pipeline, Corrosion, 2002, 58(3), p 267–275CrossRef
14.
go back to reference J.J. Park, S.I. Pyun, K.H. Na, S.M. Lee, and Y.T. Kho, Effect of Passivity of the Oxide Film in Low-pH Stress Corrosion Cracking of API5LX-65 Pipeline Steel in Bicarbonate Solution, Corrosion, 2002, 58(4), p 329–336CrossRef J.J. Park, S.I. Pyun, K.H. Na, S.M. Lee, and Y.T. Kho, Effect of Passivity of the Oxide Film in Low-pH Stress Corrosion Cracking of API5LX-65 Pipeline Steel in Bicarbonate Solution, Corrosion, 2002, 58(4), p 329–336CrossRef
15.
go back to reference B.Y. Fang, A. Atrens, J.Q. Wang, E.H. Han, Z.Y. Zhu, and W. Ke, Review of Stress Corrosion Cracking of Pipeline Steels in “Low” and “High” pH Solutions, J. Mater. Sci., 2003, 38(1), p 127–132CrossRef B.Y. Fang, A. Atrens, J.Q. Wang, E.H. Han, Z.Y. Zhu, and W. Ke, Review of Stress Corrosion Cracking of Pipeline Steels in “Low” and “High” pH Solutions, J. Mater. Sci., 2003, 38(1), p 127–132CrossRef
16.
go back to reference R.N. Parkins, Mechanistic Aspects of Intergranular Stress Corrosion Cracking of Ferritic Steels, Corrosion, 1996, 52(5), p 363–374CrossRef R.N. Parkins, Mechanistic Aspects of Intergranular Stress Corrosion Cracking of Ferritic Steels, Corrosion, 1996, 52(5), p 363–374CrossRef
17.
go back to reference B.T. Lu, F. Song, M. Gao, and M. Elboujdaini, Crack Growth Model for Pipelines Exposed to Concentrated Carbonate-Bicarbonate Solution with High pH, Corros. Sci., 2010, 52, p 4064–4072CrossRef B.T. Lu, F. Song, M. Gao, and M. Elboujdaini, Crack Growth Model for Pipelines Exposed to Concentrated Carbonate-Bicarbonate Solution with High pH, Corros. Sci., 2010, 52, p 4064–4072CrossRef
18.
go back to reference M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate-Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53, p 2831–2836CrossRef M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate-Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53, p 2831–2836CrossRef
19.
go back to reference F.M. Song, Predicting the Mechanisms and Crack Growth Rates of Pipelines Undergoing Stress Corrosion Cracking at High pH, Corros. Sci., 2009, 51, p 2657–2674CrossRef F.M. Song, Predicting the Mechanisms and Crack Growth Rates of Pipelines Undergoing Stress Corrosion Cracking at High pH, Corros. Sci., 2009, 51, p 2657–2674CrossRef
20.
go back to reference C. Lea, Stress Corrosion Cracking and Temper Brittleness Effect of Phosphorus Grain Boundary Segregation in Low-Alloy Steel, Met. Sci., 1980, 14, p 107–112CrossRef C. Lea, Stress Corrosion Cracking and Temper Brittleness Effect of Phosphorus Grain Boundary Segregation in Low-Alloy Steel, Met. Sci., 1980, 14, p 107–112CrossRef
21.
go back to reference G. Trauber and H.J. Grabke, Electrochemical and Auger-Spectroscopic Studies on the Intergranular Corrosion of Iron in Nitrate Solutions, Corros. Sci., 1979, 19, p 793–798CrossRef G. Trauber and H.J. Grabke, Electrochemical and Auger-Spectroscopic Studies on the Intergranular Corrosion of Iron in Nitrate Solutions, Corros. Sci., 1979, 19, p 793–798CrossRef
22.
go back to reference J. Flis, The Passivation of Iron-Carbon Alloys in Acidic Phosphate Solution and Its Relation to Stress Corrosion Cracking, Corros. Sci., 1985, 25, p 317–330CrossRef J. Flis, The Passivation of Iron-Carbon Alloys in Acidic Phosphate Solution and Its Relation to Stress Corrosion Cracking, Corros. Sci., 1985, 25, p 317–330CrossRef
23.
go back to reference J.Q. Wang, A. Atrens, D.R. Cousens, P.M. Kelly, C. Nockolds, and S. Bulcock, Measurement of Grain Boundary Composition for X52 Pipeline Steel, Acta Mater., 1998, 46, p 5677–5687CrossRef J.Q. Wang, A. Atrens, D.R. Cousens, P.M. Kelly, C. Nockolds, and S. Bulcock, Measurement of Grain Boundary Composition for X52 Pipeline Steel, Acta Mater., 1998, 46, p 5677–5687CrossRef
24.
go back to reference J.Q. Wang, A. Atrens, D.R. Cousens, C. Nockolds, and S. Bulcock, Boundary Characterisation of X65 Pipeline Steel Using Analytical Electron Microscopy, J. Mater. Sci., 1999, 34, p 1711–1719CrossRef J.Q. Wang, A. Atrens, D.R. Cousens, C. Nockolds, and S. Bulcock, Boundary Characterisation of X65 Pipeline Steel Using Analytical Electron Microscopy, J. Mater. Sci., 1999, 34, p 1711–1719CrossRef
25.
go back to reference J.Q. Wang, A. Atrens, D.R. Cousens, and N.N. Kinaev, Microstructure of X52 and X65 Pipeline Steels, J. Mater. Sci., 1999, 34, p 1721–1728CrossRef J.Q. Wang, A. Atrens, D.R. Cousens, and N.N. Kinaev, Microstructure of X52 and X65 Pipeline Steels, J. Mater. Sci., 1999, 34, p 1721–1728CrossRef
26.
go back to reference J.Q. Wang, A. Atrens, and D.R.G. Mitchell, Grain Boundary Characterization of X42 Pipeline Steel in Relation to IGSCC, Proceedings of Corrosion 2001. Paper 01210. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 210, NACE, Houston, 2001) J.Q. Wang, A. Atrens, and D.R.G. Mitchell, Grain Boundary Characterization of X42 Pipeline Steel in Relation to IGSCC, Proceedings of Corrosion 2001. Paper 01210. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 210, NACE, Houston, 2001)
27.
go back to reference M.J. Danielson, R.H. Jones, and P. Dusek, Effect of Microstructure and Microchemistry on the SCC Behavior of Archival and Modern Pipeline Steels in A High pH Environment, Proceedings of Corrosion 2001. Paper 01211. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 211, NACE, Houston, 2001) M.J. Danielson, R.H. Jones, and P. Dusek, Effect of Microstructure and Microchemistry on the SCC Behavior of Archival and Modern Pipeline Steels in A High pH Environment, Proceedings of Corrosion 2001. Paper 01211. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 211, NACE, Houston, 2001)
28.
go back to reference P. Liang, Corrosion Behavior and Mechanism of X80 Pipeline Steel in Ku’erle Soil Simulated Solution. PhD Thesis, University of Science and Technology Beijing 2008 [in Chinese] P. Liang, Corrosion Behavior and Mechanism of X80 Pipeline Steel in Ku’erle Soil Simulated Solution. PhD Thesis, University of Science and Technology Beijing 2008 [in Chinese]
29.
go back to reference B. Kumkum and U.K. Chatterjee, Hydrogen Permeation and Hydrogen Content Under Cathodic Charging in HSLA 80 and HSLA 100 Steels, Scripta Mater., 2001, 44(2), p 213–216CrossRef B. Kumkum and U.K. Chatterjee, Hydrogen Permeation and Hydrogen Content Under Cathodic Charging in HSLA 80 and HSLA 100 Steels, Scripta Mater., 2001, 44(2), p 213–216CrossRef
30.
go back to reference Chinese National Standard for Stress Corrosion Cracking Tests, GB T 15970, 2007 Chinese National Standard for Stress Corrosion Cracking Tests, GB T 15970, 2007
31.
go back to reference Z.F. Wang and A. Atrens, Initiation of Stress Corrosion Cracking for Pipeline Steels in a Carbonate-Bicarbonate Solution, Metall. Mater. Trans., 1996, 27A, p 2686–2691CrossRef Z.F. Wang and A. Atrens, Initiation of Stress Corrosion Cracking for Pipeline Steels in a Carbonate-Bicarbonate Solution, Metall. Mater. Trans., 1996, 27A, p 2686–2691CrossRef
32.
go back to reference A.K. Pilkey, S.B. Lambert, and A. Plumtree, Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution, Corrosion, 1995, 51(2), p 91–96CrossRef A.K. Pilkey, S.B. Lambert, and A. Plumtree, Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution, Corrosion, 1995, 51(2), p 91–96CrossRef
33.
go back to reference R.B. Rebak, Z. Xia, R. Safruddin, and S. Szklarska-Smialowska, Effect of Solution Composition and Electrochemical Potential on Stress Corrosion Cracking of X-52 Pipeline Steel, Corrosion, 1996, 52(5), p 396–405CrossRef R.B. Rebak, Z. Xia, R. Safruddin, and S. Szklarska-Smialowska, Effect of Solution Composition and Electrochemical Potential on Stress Corrosion Cracking of X-52 Pipeline Steel, Corrosion, 1996, 52(5), p 396–405CrossRef
34.
go back to reference J. Li, M. Elboujdaini, B. Fang, R.W. Revie, and M.W. Phaneuf, Microscopy Study Intergranular Stress Corrosion Cracking of X-52 Line Pipe Steel, Corrosion, 2006, 62(4), p 316–322CrossRef J. Li, M. Elboujdaini, B. Fang, R.W. Revie, and M.W. Phaneuf, Microscopy Study Intergranular Stress Corrosion Cracking of X-52 Line Pipe Steel, Corrosion, 2006, 62(4), p 316–322CrossRef
35.
go back to reference J.Q. Wang and A. Atrens, SCC Initiation for X65 Pipeline Steel in the “High” pH Carbonate/Bicarbonate Solution, Corros. Sci., 2003, 45(10), p 2199–2217CrossRef J.Q. Wang and A. Atrens, SCC Initiation for X65 Pipeline Steel in the “High” pH Carbonate/Bicarbonate Solution, Corros. Sci., 2003, 45(10), p 2199–2217CrossRef
36.
go back to reference C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang, Hydrogen-Induced Cracking and Healing Behaviour of X70 Steel, J. Alloys Compd., 2009, 484, p 966–972CrossRef C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang, Hydrogen-Induced Cracking and Healing Behaviour of X70 Steel, J. Alloys Compd., 2009, 484, p 966–972CrossRef
37.
go back to reference W.L. Zheng, Effect of Strength of Steels on the Susceptibility to Stress Corrosion Cracking, J. Chin. Soc. Corros. Prot., 1984, 4, p 287–294 ((in Chinese)) W.L. Zheng, Effect of Strength of Steels on the Susceptibility to Stress Corrosion Cracking, J. Chin. Soc. Corros. Prot., 1984, 4, p 287–294 ((in Chinese))
38.
go back to reference W. Wang, Y.Y. Shan, and K. Yang, Study of High Strength Pipeline Steels with Different Microstructures, Mater. Sci. Eng. A, 2009, 502, p 38–44CrossRef W. Wang, Y.Y. Shan, and K. Yang, Study of High Strength Pipeline Steels with Different Microstructures, Mater. Sci. Eng. A, 2009, 502, p 38–44CrossRef
39.
go back to reference Z.P. Lu, T. Shoji, Y. Takeda, Y. Ito, A. Kai, and N. Tsuchiya, Effects of Loading Mode and Water Chemistry on Stress Corrosion Crack Growth Behavior of 316L HAZ and Weld Metal Materials in High Temperature Pure Water, Corros. Sci., 2008, 50, p 625–638CrossRef Z.P. Lu, T. Shoji, Y. Takeda, Y. Ito, A. Kai, and N. Tsuchiya, Effects of Loading Mode and Water Chemistry on Stress Corrosion Crack Growth Behavior of 316L HAZ and Weld Metal Materials in High Temperature Pure Water, Corros. Sci., 2008, 50, p 625–638CrossRef
40.
go back to reference H. Hoffmeister, Modeling the Effects of Local Anodic Acidification on Stress Corrosion Cracking of Nickel, Corrosion, 2011, 67, p 1–12CrossRef H. Hoffmeister, Modeling the Effects of Local Anodic Acidification on Stress Corrosion Cracking of Nickel, Corrosion, 2011, 67, p 1–12CrossRef
41.
go back to reference B.G. Ateya and H.W. Pickering, The Distribution of Anodic and Cathodic Reaction Sites During Environmentally Assisted Cracking, Corros. Sci., 1995, 37, p 1443–1453CrossRef B.G. Ateya and H.W. Pickering, The Distribution of Anodic and Cathodic Reaction Sites During Environmentally Assisted Cracking, Corros. Sci., 1995, 37, p 1443–1453CrossRef
42.
go back to reference H. Guo, G.F. Li, X. Cai, and W. Yang, Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Solutions at Different Temperatures, Acta Metall. Sin., 2004, 40, p 967–971 ((in Chinese)) H. Guo, G.F. Li, X. Cai, and W. Yang, Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Solutions at Different Temperatures, Acta Metall. Sin., 2004, 40, p 967–971 ((in Chinese))
43.
go back to reference I.M. Dmytrakh, Corrosion Fracture of Structural Metallic Materials: Effect of Electrochemical Conditions in Crack, Strain, 2011, 47, p 427–435CrossRef I.M. Dmytrakh, Corrosion Fracture of Structural Metallic Materials: Effect of Electrochemical Conditions in Crack, Strain, 2011, 47, p 427–435CrossRef
44.
go back to reference X. Tang and Y.F. Cheng, Quantitative Characterization by Micro-electrochemical Measurements of the Synergism of Hydrogen, Stress and Dissolution on Near-Neutral pH Stress Corrosion Cracking of Pipelines, Corros. Sci., 2011, 53, p 2927–2933CrossRef X. Tang and Y.F. Cheng, Quantitative Characterization by Micro-electrochemical Measurements of the Synergism of Hydrogen, Stress and Dissolution on Near-Neutral pH Stress Corrosion Cracking of Pipelines, Corros. Sci., 2011, 53, p 2927–2933CrossRef
Metadata
Title
Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution
Authors
Min Zhu
Cuiwei Du
Xiaogang Li
Zhiyong Liu
Shengrong Wang
Tianliang Zhao
Jinghuan Jia
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0880-4

Other articles of this Issue 4/2014

Journal of Materials Engineering and Performance 4/2014 Go to the issue

Premium Partners