Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2022

31-01-2022 | Technical Article

Effect of Tempering Treatment on Atmospheric Corrosion Behavior of 3Cr13 Martensitic Stainless Steel in Marine Environment

Authors: Yong Lian, Jin Zhang, Pengfei Ji, Zunjun Zhang, Minyu Ma, Chao Zhao, Jinfeng Huang

Published in: Journal of Materials Engineering and Performance | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, 3Cr13 martensitic stainless steel was tempered to three typical strength grades, and the corresponding atmospheric corrosion behavior in a coastal zone of Wanning, China, was investigated. Electrochemical measurements were taken, and the morphology, composition, and structure of the rust formed after natural exposure were analyzed. The results indicated that different microstructures were obtained by tempering at different temperatures, which affected the corrosion behavior. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization results show that the 280°C tempered condition was prone to form a better protective passive film compared to the other two higher-temperature tempered conditions. The corrosion rate of 3Cr13 steel tempered at a low temperature of 280°C was markedly lower than that at higher temperatures of 540 and 600°C. The corrosion weight loss of specimens tempered at 540°C and 600°C was over 8 times higher than that of the specimens tempered at 280°C after two years of natural exposure. The thickness of the rust layer formed on the 540- and 600°C-tempered specimens exceeded 40 μm, which was approximately 5 times that of on the 280°C-tempered specimens. The corrosion products formed on tempered 3Cr13 steel were found to vary with the temper conditions. The corrosion products formed on tempered 3Cr13 martensitic stainless steel also varied with the tempering temperature. A rust layer mainly composed of γ-FeOOH and β-FeOOH was formed on 280°C-tempered 3Cr13 steel specimens, while α-FeOOH and Fe3O4 were formed on 540- and 600°C-tempered 3Cr13 steel specimens in addition to γ-FeOOH and β-FeOOH. Distinct pitting corrosion occurred on specimens of all three strength grades specimens during natural exposure. Formation of Cr-rich carbides during high-temperature tempering increased corrosion pit initiation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.W. Comeli, A.S. da Rocha, C.A.S. de Oliveira, G. Lemos and R.M. de Castro, Effects of Tempering temperature on the Microstructure and Creep Resistance of X22CrMoV12-1 Steel used on Steam Turbine Blades, Am. J. Mater. Sci., 2018, 8, p 65–72. F.W. Comeli, A.S. da Rocha, C.A.S. de Oliveira, G. Lemos and R.M. de Castro, Effects of Tempering temperature on the Microstructure and Creep Resistance of X22CrMoV12-1 Steel used on Steam Turbine Blades, Am. J. Mater. Sci., 2018, 8, p 65–72.
2.
go back to reference E. Mabruri, Z.A. Syahlan, M.S. Sahlan, T.B. Anwar and B.A. Romijarso, Effect of Tempering Temperature on Hardness and Impact Resistance of the 410-Mo Martensitic Stainless Steels for Steam Turbine Blades, Int. J. Eng. Technol., 2017, 8, p 2547–2551.CrossRef E. Mabruri, Z.A. Syahlan, M.S. Sahlan, T.B. Anwar and B.A. Romijarso, Effect of Tempering Temperature on Hardness and Impact Resistance of the 410-Mo Martensitic Stainless Steels for Steam Turbine Blades, Int. J. Eng. Technol., 2017, 8, p 2547–2551.CrossRef
3.
go back to reference A. Dalmau, C. Richard and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179.CrossRef A. Dalmau, C. Richard and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179.CrossRef
4.
go back to reference Q.Y. Zang, Y.F. Jin, T. Zhang and Y.T. Yang, Effect of Yttrium Addition on Microstructure, Mechanical and Corrosion Properties of 20Cr13 Martensitic Stainless Steel, J. Iron. Steel Res. Int., 2020, 4, p 451–460.CrossRef Q.Y. Zang, Y.F. Jin, T. Zhang and Y.T. Yang, Effect of Yttrium Addition on Microstructure, Mechanical and Corrosion Properties of 20Cr13 Martensitic Stainless Steel, J. Iron. Steel Res. Int., 2020, 4, p 451–460.CrossRef
5.
go back to reference W.M. Garrison and M.O.H. Amuda, Stainless Steels: Martensitic in Reference Module in Materials Science and Materials Engineering, Elsevier, Hoboken, 2017. W.M. Garrison and M.O.H. Amuda, Stainless Steels: Martensitic in Reference Module in Materials Science and Materials Engineering, Elsevier, Hoboken, 2017.
6.
go back to reference B.W. Darvell, Materials Science for Dentistry, Woodhead Publishing, UK, 2018. B.W. Darvell, Materials Science for Dentistry, Woodhead Publishing, UK, 2018.
8.
go back to reference J.Y. Park and Y.S. Park, The Effects of Heat-Treatment Parameters on Corrosion Resistance and Phase Transformations of 14Cr–3Mo Martensitic Stainless Steel, Mater. Sci. Eng: A., 2007, 449, p 1131–1134.CrossRef J.Y. Park and Y.S. Park, The Effects of Heat-Treatment Parameters on Corrosion Resistance and Phase Transformations of 14Cr–3Mo Martensitic Stainless Steel, Mater. Sci. Eng: A., 2007, 449, p 1131–1134.CrossRef
9.
go back to reference B. Abbasi-Khazaei and A. Mollaahmadi, Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties, J. Mater. Eng. Perform., 2017, 26, p 1626–1633.CrossRef B. Abbasi-Khazaei and A. Mollaahmadi, Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties, J. Mater. Eng. Perform., 2017, 26, p 1626–1633.CrossRef
10.
go back to reference S.K. Bonagani, V. Bathula and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354.CrossRef S.K. Bonagani, V. Bathula and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354.CrossRef
11.
go back to reference S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, X. Liu and X. Ge, The Effect of Tempering Temperature on the Microstructure and Electrochemical Properties of a 13 wt.% Cr-type Martensitic Stainless Steel, Electrochimica Acta., 2015, 165, p 45–55.CrossRef S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, X. Liu and X. Ge, The Effect of Tempering Temperature on the Microstructure and Electrochemical Properties of a 13 wt.% Cr-type Martensitic Stainless Steel, Electrochimica Acta., 2015, 165, p 45–55.CrossRef
12.
go back to reference K. Morshed-Behbahani, N. Zakerin, P. Najafisayar and M. Pakshir, A survey on the passivity of tempered AISI 420 martensitic stainless steel, Corros. Sci., 2021, 183, p 109340.CrossRef K. Morshed-Behbahani, N. Zakerin, P. Najafisayar and M. Pakshir, A survey on the passivity of tempered AISI 420 martensitic stainless steel, Corros. Sci., 2021, 183, p 109340.CrossRef
13.
go back to reference A. Kvryan. The Influence of Heat Treatment on Corrosion Behavior of Martensitic Stainless Steel UNS 42670. Doctor dissertation, Boise State University, Idaho. 2019. A. Kvryan. The Influence of Heat Treatment on Corrosion Behavior of Martensitic Stainless Steel UNS 42670. Doctor dissertation, Boise State University, Idaho. 2019.
14.
go back to reference I. Bösing, L. Cramer, M. Steinbacher, H.W. Zoch, J. Thöming and M. Baune, Influence of Heat Treatment on the Microstructure and Corrosion Resistance of Martensitic Stainless Steel, AIP Adv., 2019, 6, p 065317.CrossRef I. Bösing, L. Cramer, M. Steinbacher, H.W. Zoch, J. Thöming and M. Baune, Influence of Heat Treatment on the Microstructure and Corrosion Resistance of Martensitic Stainless Steel, AIP Adv., 2019, 6, p 065317.CrossRef
15.
go back to reference ISO 8407-2009. Corrosion of metals and alloys — removal of corrosion products from corrosion test specimens. ISO 8407-2009. Corrosion of metals and alloys — removal of corrosion products from corrosion test specimens.
16.
go back to reference ISO 9226-2012. Corrosion of metals and alloys — Corrosivity of atmospheres — Determination of corrosion rate of standard specimens for the evaluation of corrosivity. ISO 9226-2012. Corrosion of metals and alloys — Corrosivity of atmospheres — Determination of corrosion rate of standard specimens for the evaluation of corrosivity.
17.
go back to reference D.A. Porter and K.E. Easterling, Phase Transformation in Metal and Alloys, Taylor and Francis group, UK, 2009. D.A. Porter and K.E. Easterling, Phase Transformation in Metal and Alloys, Taylor and Francis group, UK, 2009.
18.
go back to reference I.A. Channa, A.A. Shah, S.H. Abro, M.A. Siddiqui, M. Mujahid and A.D. Chandio, Effect of Tempering Temperature on the Properties of Martensitic Stainless Steel AISI-420, Sukkur IBA J. Emerg. Technol., 2019, 2, p 51–56.CrossRef I.A. Channa, A.A. Shah, S.H. Abro, M.A. Siddiqui, M. Mujahid and A.D. Chandio, Effect of Tempering Temperature on the Properties of Martensitic Stainless Steel AISI-420, Sukkur IBA J. Emerg. Technol., 2019, 2, p 51–56.CrossRef
19.
go back to reference K. Morshed-Behbahani, N. Zakerin, P. Najafisayar et al., A Survey on the Passivity of Tempered AISI 420 Martensitic Stainless Steel, Corros. Sci., 2021, 183, p 109340.CrossRef K. Morshed-Behbahani, N. Zakerin, P. Najafisayar et al., A Survey on the Passivity of Tempered AISI 420 Martensitic Stainless Steel, Corros. Sci., 2021, 183, p 109340.CrossRef
20.
go back to reference S. Gündüz, Effect of Chemical Composition, Martensite Volume Fraction and Tempering on Tensile Behaviour of Dual Phase Steels, Mater. Lett., 2009, 63, p 2381–2383.CrossRef S. Gündüz, Effect of Chemical Composition, Martensite Volume Fraction and Tempering on Tensile Behaviour of Dual Phase Steels, Mater. Lett., 2009, 63, p 2381–2383.CrossRef
21.
go back to reference X. Qi, H. Mao and Y. Yang, Corrosion Behavior of Nitrogen Alloyed Martensitic Stainless Steel in Chloride Containing Solutions, Corros. Sci., 2017, 120, p 90–98.CrossRef X. Qi, H. Mao and Y. Yang, Corrosion Behavior of Nitrogen Alloyed Martensitic Stainless Steel in Chloride Containing Solutions, Corros. Sci., 2017, 120, p 90–98.CrossRef
22.
go back to reference M. Yaso, S. Morito, T. Ohba and K. Kubota, Microstructure of Martensite in Fe–C–Cr Steel, Mater. Sci. Eng., A, 2008, 481, p 770–773.CrossRef M. Yaso, S. Morito, T. Ohba and K. Kubota, Microstructure of Martensite in Fe–C–Cr Steel, Mater. Sci. Eng., A, 2008, 481, p 770–773.CrossRef
23.
go back to reference K.H. Anantha, C. Örnek, S. Ejnermark et al., Correlative Microstructure Analysis and In situ Corrosion Study of AISI 420 Martensitic Stainless Steel for Plastic Molding Applications, J. Electrochem. Soc., 2017, 164, p C85.CrossRef K.H. Anantha, C. Örnek, S. Ejnermark et al., Correlative Microstructure Analysis and In situ Corrosion Study of AISI 420 Martensitic Stainless Steel for Plastic Molding Applications, J. Electrochem. Soc., 2017, 164, p C85.CrossRef
24.
go back to reference R.A. Legault and V.P. Pearson, The Kinetics of the Atmospheric Corrosion of Aluminized Steel, Corrosion, 1978, 34, p 344–349.CrossRef R.A. Legault and V.P. Pearson, The Kinetics of the Atmospheric Corrosion of Aluminized Steel, Corrosion, 1978, 34, p 344–349.CrossRef
25.
go back to reference H.E. Townsend, J.C. Zoccola, Eight-year atmospheric corrosion performance of weathering steel in industrial, rural, and marine environments, in: Atmospheric Corrosion of Metals, ASTM International, 1982. H.E. Townsend, J.C. Zoccola, Eight-year atmospheric corrosion performance of weathering steel in industrial, rural, and marine environments, in: Atmospheric Corrosion of Metals, ASTM International, 1982.
26.
go back to reference H. Luo, X.G. Li, C.F. Dong and K. Xiao, Degradation of Austenite Stainless Steel by Atmospheric Exposure in Tropical Marine Environment, Corros. Eng., Sci. Technol., 2013, 48, p 221–229.CrossRef H. Luo, X.G. Li, C.F. Dong and K. Xiao, Degradation of Austenite Stainless Steel by Atmospheric Exposure in Tropical Marine Environment, Corros. Eng., Sci. Technol., 2013, 48, p 221–229.CrossRef
27.
go back to reference J. Wang, Z.Y. Wang and W. Ke, Corrosion Behaviour of Weathering Steel in Diluted Qinghai Salt Lake Water in a Laboratory Accelerated Test that Involved Cyclic Wet/Dry Conditions, Mater. Chem. Phys., 2010, 124, p 952–958.CrossRef J. Wang, Z.Y. Wang and W. Ke, Corrosion Behaviour of Weathering Steel in Diluted Qinghai Salt Lake Water in a Laboratory Accelerated Test that Involved Cyclic Wet/Dry Conditions, Mater. Chem. Phys., 2010, 124, p 952–958.CrossRef
28.
go back to reference Y. Ma, Y. Li and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006.CrossRef Y. Ma, Y. Li and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006.CrossRef
29.
go back to reference Z. Wang, J. Liu, L. Wu, R. Han and Y. Sun, Study of the Corrosion Behavior of Weathering Steels in Atmospheric Environments, Corros. Sci., 2013, 67, p 1–10.CrossRef Z. Wang, J. Liu, L. Wu, R. Han and Y. Sun, Study of the Corrosion Behavior of Weathering Steels in Atmospheric Environments, Corros. Sci., 2013, 67, p 1–10.CrossRef
30.
go back to reference V. Lins, E.A. Gomes, C.G. Costa, M.R. das Castro and R.A. Carneiro, Corrosion Behavior of Experimental Nickel-Bearing Carbon Steels Evaluated using Field and Electrochemical Tests, REM-Int. Eng. J., 2018, 71, p 613–620.CrossRef V. Lins, E.A. Gomes, C.G. Costa, M.R. das Castro and R.A. Carneiro, Corrosion Behavior of Experimental Nickel-Bearing Carbon Steels Evaluated using Field and Electrochemical Tests, REM-Int. Eng. J., 2018, 71, p 613–620.CrossRef
31.
go back to reference Y.M. Fan, W. Liu, Z.T. Sun, T. Chowwanonthapunya, Y.G. Zhao, B.J. Dong, T.Y. Zhang, W. Banthukul and X.G. Li, Corrosion Behaviors of Carbon Steel and Ni-Advanced Weathering Steel Exposed to Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2020, 10, p 6417–6426.CrossRef Y.M. Fan, W. Liu, Z.T. Sun, T. Chowwanonthapunya, Y.G. Zhao, B.J. Dong, T.Y. Zhang, W. Banthukul and X.G. Li, Corrosion Behaviors of Carbon Steel and Ni-Advanced Weathering Steel Exposed to Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2020, 10, p 6417–6426.CrossRef
32.
go back to reference J.C. Guerra, A. Castañeda, F. Corvo, J.J. Howland and J. Rodríguez, Atmospheric Corrosion of Low Carbon Steel in a Coastal Zone of Ecuador: Anomalous Behavior of Chloride Deposition Versus Distance from the Sea, Mater. Corros., 2019, 70, p 444–460.CrossRef J.C. Guerra, A. Castañeda, F. Corvo, J.J. Howland and J. Rodríguez, Atmospheric Corrosion of Low Carbon Steel in a Coastal Zone of Ecuador: Anomalous Behavior of Chloride Deposition Versus Distance from the Sea, Mater. Corros., 2019, 70, p 444–460.CrossRef
33.
go back to reference H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa and T. Nakayama, Formation of Magnetite Rust Particles by Reacting Iron Powder with Artificial α-, β-and γ-FeOOH in Aqueous Media, Corros. Sci., 2014, 78, p 384–387.CrossRef H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa and T. Nakayama, Formation of Magnetite Rust Particles by Reacting Iron Powder with Artificial α-, β-and γ-FeOOH in Aqueous Media, Corros. Sci., 2014, 78, p 384–387.CrossRef
34.
go back to reference M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century, Corros. Sci., 1994, 36, p 283–299.CrossRef M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century, Corros. Sci., 1994, 36, p 283–299.CrossRef
35.
go back to reference B.Z. Sun, X.M. Zuo, X.Q. Cheng and X.G. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, Mater. Degrad., 2020, 4, p 1–9.CrossRef B.Z. Sun, X.M. Zuo, X.Q. Cheng and X.G. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, Mater. Degrad., 2020, 4, p 1–9.CrossRef
36.
go back to reference L. Ma, F. Wiame, V. Maurice and P. Marcus, New Insight on Early Oxidation Stages of Austenitic Stainless Steel from In situ XPS Analysis on Single-Crystalline Fe–18Cr–13Ni, Corros. Sci., 2018, 140, p 205–216.CrossRef L. Ma, F. Wiame, V. Maurice and P. Marcus, New Insight on Early Oxidation Stages of Austenitic Stainless Steel from In situ XPS Analysis on Single-Crystalline Fe–18Cr–13Ni, Corros. Sci., 2018, 140, p 205–216.CrossRef
37.
go back to reference Z. Wang, A. Seyeux, S. Zanna, V. Maurice and P. Marcus, Chloride-induced Alterations of the Passive Film on 316L Stainless Steel and Blocking Effect of Pre-passivation, Electrochimica Acta, 2020, 329, p 135159.CrossRef Z. Wang, A. Seyeux, S. Zanna, V. Maurice and P. Marcus, Chloride-induced Alterations of the Passive Film on 316L Stainless Steel and Blocking Effect of Pre-passivation, Electrochimica Acta, 2020, 329, p 135159.CrossRef
38.
go back to reference D.A. Shirley, High-resolution X-ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972, 5, p 4709.CrossRef D.A. Shirley, High-resolution X-ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972, 5, p 4709.CrossRef
39.
go back to reference S. Tougaard, Practical Guide to the Use of Backgrounds in Quantitative XPS, J. Vacuum Sci. Technol. A: Vacuum, Surf. Films, 2021, 39, p 011201.CrossRef S. Tougaard, Practical Guide to the Use of Backgrounds in Quantitative XPS, J. Vacuum Sci. Technol. A: Vacuum, Surf. Films, 2021, 39, p 011201.CrossRef
40.
go back to reference R.A. Cottis and L.L. Shreir, Shreir’s Corrosion, Elsevier, Amsterdam, 2010. R.A. Cottis and L.L. Shreir, Shreir’s Corrosion, Elsevier, Amsterdam, 2010.
Metadata
Title
Effect of Tempering Treatment on Atmospheric Corrosion Behavior of 3Cr13 Martensitic Stainless Steel in Marine Environment
Authors
Yong Lian
Jin Zhang
Pengfei Ji
Zunjun Zhang
Minyu Ma
Chao Zhao
Jinfeng Huang
Publication date
31-01-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06597-8

Other articles of this Issue 6/2022

Journal of Materials Engineering and Performance 6/2022 Go to the issue

Premium Partners