Skip to main content
Top
Published in: Cellulose 1/2016

06-01-2016 | Original Paper

Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles

Authors: Xingman Zhou, Xinxing Lin, Kevin L. White, Shan Lin, Hui Wu, Shilin Cao, Liulian Huang, Lihui Chen

Published in: Cellulose | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acetylated cellulose powders with varying degree of substitution (DS) were prepared by reacting cellulose with acetic anhydride. The effect of DS on the hydrophobic properties of acetylated cellulose was examined based on contact angle and mechanical stability measurements. The surface energy of the acetylated cellulose decreases with increasing DS, and for DS of 0.39, the acetylated cellulose was able to encapsulate a water droplet to form a liquid marble. The corresponding cellulose acetate powder-over-water spreading coefficient was ca. 8.9. Increasing DS also improved the mechanical stability of the liquid marble. This study opens important perspectives for the precise control of DS of cellulose acetate for various practical applications in membranes, filters, scaffolds, and textiles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Amin M, Abbas NS, Hussain MA, Edgar KJ, Tahir MN, Tremel W, Sher M (2015) Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 22:2011–2022CrossRef Amin M, Abbas NS, Hussain MA, Edgar KJ, Tahir MN, Tremel W, Sher M (2015) Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 22:2011–2022CrossRef
go back to reference Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef
go back to reference Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375CrossRef Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375CrossRef
go back to reference ASTM D871-96 (2004) Standard test methods of testing cellulose acetate (solution method; procedure A) ASTM D871-96 (2004) Standard test methods of testing cellulose acetate (solution method; procedure A)
go back to reference Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999CrossRef Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999CrossRef
go back to reference Avila Ramirez JA, Juan Suriano C, Cerrutti P, Laura Foresti M (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423CrossRef Avila Ramirez JA, Juan Suriano C, Cerrutti P, Laura Foresti M (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423CrossRef
go back to reference Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271CrossRef Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271CrossRef
go back to reference Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572CrossRef Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572CrossRef
go back to reference Cai J, Zhang LN, Zhou JP, Li H, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562CrossRef Cai J, Zhang LN, Zhou JP, Li H, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562CrossRef
go back to reference Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef
go back to reference Cao SL, Ma XJ, Lin L, Huang F, Huang LL, Chen LH (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. Bioresources 9:4528–4539CrossRef Cao SL, Ma XJ, Lin L, Huang F, Huang LL, Chen LH (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. Bioresources 9:4528–4539CrossRef
go back to reference Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRef Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRef
go back to reference Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9:8980–8991CrossRef Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9:8980–8991CrossRef
go back to reference Cetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003CrossRef Cetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003CrossRef
go back to reference Cortina H, Martinez-Alonso C, Castillo-Ortega M, Hu H (2012) Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater Sci Eng, B 177:1491–1496CrossRef Cortina H, Martinez-Alonso C, Castillo-Ortega M, Hu H (2012) Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater Sci Eng, B 177:1491–1496CrossRef
go back to reference Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128CrossRef Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128CrossRef
go back to reference Frisoni G, Baiardo M, Scandola M, Lednická D, Cnockaert MC, Mergaert J, Swings J (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules 2:476–482CrossRef Frisoni G, Baiardo M, Scandola M, Lednická D, Cnockaert MC, Mergaert J, Swings J (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules 2:476–482CrossRef
go back to reference Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef
go back to reference Hapgood KP, Khanmohammadi B (2009) Granulation of hydrophobic powders. Powder Technol 189:253–262CrossRef Hapgood KP, Khanmohammadi B (2009) Granulation of hydrophobic powders. Powder Technol 189:253–262CrossRef
go back to reference Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRef Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRef
go back to reference Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581CrossRef Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581CrossRef
go back to reference Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRef Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRef
go back to reference Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRef Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRef
go back to reference Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRef Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRef
go back to reference Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
go back to reference Li M, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015a) Cellulose nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain Chem Eng 3:821–832CrossRef Li M, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015a) Cellulose nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain Chem Eng 3:821–832CrossRef
go back to reference Li MC, Wu QL, Song KL, Qing Y, Wu YQ (2015b) Cellulose nanoparticles as modifiers for Rheology and fluid loss in Bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016CrossRef Li MC, Wu QL, Song KL, Qing Y, Wu YQ (2015b) Cellulose nanoparticles as modifiers for Rheology and fluid loss in Bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016CrossRef
go back to reference Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842CrossRef Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842CrossRef
go back to reference Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun. doi:10.1039/C1035CC08842A Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun. doi:10.​1039/​C1035CC08842A
go back to reference Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293CrossRef Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293CrossRef
go back to reference Malm CJ, Tanghe LJ, Schmitt JT (1961) Catalysts for acetylation of cellulose. Ind Eng Chem 53:363–367CrossRef Malm CJ, Tanghe LJ, Schmitt JT (1961) Catalysts for acetylation of cellulose. Ind Eng Chem 53:363–367CrossRef
go back to reference Matsukuma D, Watanabe H, Yamaguchi H, Takahara A (2011) Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Langmuir 27:1269–1274CrossRef Matsukuma D, Watanabe H, Yamaguchi H, Takahara A (2011) Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Langmuir 27:1269–1274CrossRef
go back to reference McEleney P, Walker GM, Larmour IA, Bell SEJ (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147:373–382CrossRef McEleney P, Walker GM, Larmour IA, Bell SEJ (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147:373–382CrossRef
go back to reference McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7:5473–5481CrossRef McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7:5473–5481CrossRef
go back to reference Mele E, Bayer IS, Nanni G, Heredia-Guerrero JA, Ruffilli R, Ayadi F, Marini L, Cingolani R, Athanassiou A (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30:2896–2902CrossRef Mele E, Bayer IS, Nanni G, Heredia-Guerrero JA, Ruffilli R, Ayadi F, Marini L, Cingolani R, Athanassiou A (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30:2896–2902CrossRef
go back to reference Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly (methylsilsesquioxane) particles. Langmuir 30:9071–9075CrossRef Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly (methylsilsesquioxane) particles. Langmuir 30:9071–9075CrossRef
go back to reference Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef
go back to reference Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc B 269:1211–1215CrossRef Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc B 269:1211–1215CrossRef
go back to reference Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlič M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613CrossRef Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlič M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613CrossRef
go back to reference Puls J, Wilson S, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165CrossRef Puls J, Wilson S, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165CrossRef
go back to reference Rensch H-P, Riedl B (1993) An Infrared spectroscopic study of chemically modified chemithermomechanical pulp. J Wood Chem Technol 13:167–186CrossRef Rensch H-P, Riedl B (1993) An Infrared spectroscopic study of chemically modified chemithermomechanical pulp. J Wood Chem Technol 13:167–186CrossRef
go back to reference Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRef Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRef
go back to reference Shanbhag A, Barclay B, Koziara J, Shivanand P (2007) Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose 14:65–71CrossRef Shanbhag A, Barclay B, Koziara J, Shivanand P (2007) Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose 14:65–71CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487CrossRef Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487CrossRef
go back to reference Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef
go back to reference Tupa MV, Ramírez JAÁ, Vázquez A, Foresti ML (2015) Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules. Food Chem 170:295–302CrossRef Tupa MV, Ramírez JAÁ, Vázquez A, Foresti ML (2015) Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules. Food Chem 170:295–302CrossRef
go back to reference Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef
go back to reference Wu H, Watanabe H, Ma W, Fujimoto A, Higuchi T, Uesugi K, Takeuchi A, Suzuki Y, Jinnai H, Takahara A (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29:14971–14975CrossRef Wu H, Watanabe H, Ma W, Fujimoto A, Higuchi T, Uesugi K, Takeuchi A, Suzuki Y, Jinnai H, Takahara A (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29:14971–14975CrossRef
go back to reference Xu D, Voiges K, Elder T, Mischnick P, Edgar KJ (2012) Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 13:2195–2201CrossRef Xu D, Voiges K, Elder T, Mischnick P, Edgar KJ (2012) Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 13:2195–2201CrossRef
go back to reference Xue YH, Wang HX, Zhao Y, Dai LM, Feng LF, Wang XG, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22:4814–4818CrossRef Xue YH, Wang HX, Zhao Y, Dai LM, Feng LF, Wang XG, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22:4814–4818CrossRef
go back to reference Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067–5073CrossRef Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067–5073CrossRef
go back to reference Zini E, Scandola M, Gatenholm P (2003) Heterogeneous acylation of flax fibers. Reaction kinetics and surface properties. Biomacromolecules 4:821–827CrossRef Zini E, Scandola M, Gatenholm P (2003) Heterogeneous acylation of flax fibers. Reaction kinetics and surface properties. Biomacromolecules 4:821–827CrossRef
Metadata
Title
Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles
Authors
Xingman Zhou
Xinxing Lin
Kevin L. White
Shan Lin
Hui Wu
Shilin Cao
Liulian Huang
Lihui Chen
Publication date
06-01-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0856-z

Other articles of this Issue 1/2016

Cellulose 1/2016 Go to the issue