Skip to main content
Top
Published in: Metal Science and Heat Treatment 9-10/2014

01-01-2014

Effect of the Grain Size and Deformation Substructure of Austenite on the Crystal Geometry of Bainite and Martensite in Low-Carbon Steels

Authors: N. Yu. Zolotarevskii, A. A. Zisman, S. N. Panpurin, Yu. F. Titovets, S. A. Golosienko, E. I. Khlusova

Published in: Metal Science and Heat Treatment | Issue 9-10/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of deformation in the austenitic temperature range on the features of the crystal geometry of the packet-and-block structure of martensite and bainite after cooling is studied for two low-carbon steels with different levels of microalloying. The distribution of lattice off-orientations in the substructure of the austenite formed by hot deformation of a model austenitic steel SS304 is determined. The effect of the grain size of the austenite and of the cooling rate on the bainite and martensite effective grain sizes is investigated. The results are analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Parallelism is obeyed only in the case of the Kurdyumov – Sachs orientation relation (OR), but with some deviation in experimental studies.
 
2
We give the values of the angles of off-orientation between the variants computed for the experimentally observed OR.
 
3
When we determined these spectra, the boundary was assumed to be close to the CSB if the deviation of the off-orientation on it from the ideal one between variants V1 – V24 did not exceed 1°. This low permissible deviation was chosen in order to avoid getting of some off-orientations into the interval of closeness to more than one CSB, among which their exist off-orientations rather close with respect to the angle and to the axis.
 
4
Note that the angles of interblock off-orientations have been computed for a specific orientation relation and can differ somewhat from experimental angles. For example, the maximum in Fig. 6 b corresponding to boundaries V1/V4 is displaced by 6° with respect to the computed value of 5.4°.
 
Literature
1.
go back to reference Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Shtremel, “Packing of martensite crystals in a pseudomonocrystal,” Dokl. Akad. Nauk SSSR, 237(3), 574 – 576 (1977). Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Shtremel, “Packing of martensite crystals in a pseudomonocrystal,” Dokl. Akad. Nauk SSSR, 237(3), 574 – 576 (1977).
2.
go back to reference V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and N. L. Yakovlev, “Structure of a martensite packet in structural steels,” Fiz. Met. Metalloved., 66, 759 – 769 (1988). V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and N. L. Yakovlev, “Structure of a martensite packet in structural steels,” Fiz. Met. Metalloved., 66, 759 – 769 (1988).
3.
go back to reference A. Lambert-Perlade, A. F. Gourgues, and A. Pineau, “Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel,” Acta Mater., 52, 2337 – 2348 (2004).CrossRef A. Lambert-Perlade, A. F. Gourgues, and A. Pineau, “Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel,” Acta Mater., 52, 2337 – 2348 (2004).CrossRef
4.
go back to reference S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater., 54, 5323 – 5331 (2006).CrossRef S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater., 54, 5323 – 5331 (2006).CrossRef
5.
go back to reference N. Takayama, G. Miyamoto, and T. Furuhara, “Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel,” Acta Mater., 60, 2387 – 2396 (2012).CrossRef N. Takayama, G. Miyamoto, and T. Furuhara, “Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel,” Acta Mater., 60, 2387 – 2396 (2012).CrossRef
6.
go back to reference A. Lambert-Perlade, A. F. Gourgues, J. Besson, et al., “Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel,” Metall. Mater. Trans. A, 35A, 1039 – 1053 (2004). A. Lambert-Perlade, A. F. Gourgues, J. Besson, et al., “Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel,” Metall. Mater. Trans. A, 35A, 1039 – 1053 (2004).
7.
go back to reference Z. Guo, C. S. Lee, and J. W. Morris Jr., “On coherent transformations in steel,” Acta Mater., 52, 5511 – 5518 (2004).CrossRef Z. Guo, C. S. Lee, and J. W. Morris Jr., “On coherent transformations in steel,” Acta Mater., 52, 5511 – 5518 (2004).CrossRef
8.
go back to reference G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite,” Acta Mater., 58, 6393 – 6403 (2010).CrossRef G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite,” Acta Mater., 58, 6393 – 6403 (2010).CrossRef
9.
go back to reference G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Quantitative analysis of variant selection in ausformed lath martensite,” Acta Mater., 60, 1139 – 1148 (2012).CrossRef G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Quantitative analysis of variant selection in ausformed lath martensite,” Acta Mater., 60, 1139 – 1148 (2012).CrossRef
10.
go back to reference G. Iwata, N. Miyamoto, N. Takayama, and T. Furuhara, “Reconstruction of parent austenite grain structure based on crystal orientation map of bainite with and without ausforming,” ISIJ Int., 51, 1174 – 1178 (2011).CrossRef G. Iwata, N. Miyamoto, N. Takayama, and T. Furuhara, “Reconstruction of parent austenite grain structure based on crystal orientation map of bainite with and without ausforming,” ISIJ Int., 51, 1174 – 1178 (2011).CrossRef
11.
go back to reference A. G. Kozlova and L. M. Utevskii, “Inheritance by martensite of sub-boundaries existing in the austenite of structural steels,” Fiz. Met. Metalloved., 37, 218 – 220 (1974). A. G. Kozlova and L. M. Utevskii, “Inheritance by martensite of sub-boundaries existing in the austenite of structural steels,” Fiz. Met. Metalloved., 37, 218 – 220 (1974).
12.
go back to reference V. V. Rybin, E. I. Khlusova, E. V. Nesterov, and M. S. Mikhailov, “Formation of structure and properties in low-alloy low-carbon steel due to thermomechanical treatment with accelerated cooling,” Vopr. Materialoved., No. 4(52), 329 – 340 (2007). V. V. Rybin, E. I. Khlusova, E. V. Nesterov, and M. S. Mikhailov, “Formation of structure and properties in low-alloy low-carbon steel due to thermomechanical treatment with accelerated cooling,” Vopr. Materialoved., No. 4(52), 329 – 340 (2007).
13.
go back to reference A. S. Taylor, P. Cizek, and P. D. Hodgson, “Comparison of 304 stainless steel and Ni – 30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing,” Acta Mater., 59, 5832 – 5844 (2011).CrossRef A. S. Taylor, P. Cizek, and P. D. Hodgson, “Comparison of 304 stainless steel and Ni – 30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing,” Acta Mater., 59, 5832 – 5844 (2011).CrossRef
14.
go back to reference A. S. Taylor, P. Cizek, and P. D. Hodgson, “Orientation dependence of the substructure characteristics in a Ni – 30Fe austenitic model alloy deformed in hot plane strain compression,” Acta Mater., 60, 1548 – 1569 (2012).CrossRef A. S. Taylor, P. Cizek, and P. D. Hodgson, “Orientation dependence of the substructure characteristics in a Ni – 30Fe austenitic model alloy deformed in hot plane strain compression,” Acta Mater., 60, 1548 – 1569 (2012).CrossRef
15.
go back to reference T. V. Soshina, A. A. Zisman, and E. I. Khlusova, “Determination of former austenite grains by the method of chemical etching in vacuum in imitation of TMT of low-carbon steel,” Metallurg, No. 2, 63 – 70 (2013). T. V. Soshina, A. A. Zisman, and E. I. Khlusova, “Determination of former austenite grains by the method of chemical etching in vacuum in imitation of TMT of low-carbon steel,” Metallurg, No. 2, 63 – 70 (2013).
16.
go back to reference N. Yu. Zolotarevsky, E. V. Nesterova, A. S. Rubtsov, and V. V. Rybin, “Large-angle boundaries appearing in phase transformations,” Poverkhnost’, No. 5, 30 – 35 (1982). N. Yu. Zolotarevsky, E. V. Nesterova, A. S. Rubtsov, and V. V. Rybin, “Large-angle boundaries appearing in phase transformations,” Poverkhnost’, No. 5, 30 – 35 (1982).
17.
go back to reference V. V. Rybin, High Plastic Strains and Ductile Fracture [in Russian], Metallurgiya, Moscow (1986), 224 p. V. V. Rybin, High Plastic Strains and Ductile Fracture [in Russian], Metallurgiya, Moscow (1986), 224 p.
18.
go back to reference S. M. van Bohemen, M. J. Santofimia, and J. Sietsma, “Experimental evidence for bainite formation below M s in Fe – 0.66C,” Scr. Mater., 58, 488 (2008).CrossRef S. M. van Bohemen, M. J. Santofimia, and J. Sietsma, “Experimental evidence for bainite formation below M s in Fe – 0.66C,” Scr. Mater., 58, 488 (2008).CrossRef
19.
go back to reference E. V. Nesterova, N. Yu. Zolotarevsky, Yu. F. Titovets, and E. I. Khlusova, “Inheritance of off-orientations and model of formation of bainite structure in low-carbon steels under the effect of deformation of the austenite,” Vopr. Materialoved., No. 4(68), 17 – 26 (2011). E. V. Nesterova, N. Yu. Zolotarevsky, Yu. F. Titovets, and E. I. Khlusova, “Inheritance of off-orientations and model of formation of bainite structure in low-carbon steels under the effect of deformation of the austenite,” Vopr. Materialoved., No. 4(68), 17 – 26 (2011).
Metadata
Title
Effect of the Grain Size and Deformation Substructure of Austenite on the Crystal Geometry of Bainite and Martensite in Low-Carbon Steels
Authors
N. Yu. Zolotarevskii
A. A. Zisman
S. N. Panpurin
Yu. F. Titovets
S. A. Golosienko
E. I. Khlusova
Publication date
01-01-2014
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 9-10/2014
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-014-9668-2

Other articles of this Issue 9-10/2014

Metal Science and Heat Treatment 9-10/2014 Go to the issue

Premium Partners