Skip to main content
Top
Published in: Journal of Iron and Steel Research International 3/2021

24-06-2020 | Original Paper

Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition

Authors: Qian An, Zhi-xin Xia, Chi Zhang, Zhi-gang Yang, Hao Chen

Published in: Journal of Iron and Steel Research International | Issue 3/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser. The microstructure evolution of the reduced activation steel was investigated using the scanning electron microscope, transmission electron microscope and electron backscatter diffraction. The experimental results showed that the grains close to the substrate were smaller than the grains in the upper layers. Compared to those deposited using a Gaussian laser, the samples deposited using a ring-shaped laser showed a more homogeneous microstructure. Furthermore, a finite element analysis (FEA) model was applied to reveal the thermal history during laser melting deposition. The simulation results were well validated with the experimental results. FEA results indicate that the peak temperature increases and the cooling rate decreases, as the layer gets further from the substrate. Additionally, the temperature and the cooling rate resulting from the Gaussian laser model were higher at the midline of the samples and lower around the edges, whereas those of the ring-shaped laser model were consistent with both at the center and around the edges.
Literature
[1]
go back to reference A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, J. Nucl. Mater. 417 (2011) 176–179.CrossRef A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, J. Nucl. Mater. 417 (2011) 176–179.CrossRef
[2]
go back to reference Z. Xia, J. Xu, J. Shi, T. Shi, C. Sun, D. Qiu, Add. Manuf. 33 (2020) 101114. Z. Xia, J. Xu, J. Shi, T. Shi, C. Sun, D. Qiu, Add. Manuf. 33 (2020) 101114.
[3]
go back to reference S. Noh, M. Ando, H. Tanigawa, H. Fujii, A. Kimura, J. Nucl. Mater. 478 (2016) 1–6.CrossRef S. Noh, M. Ando, H. Tanigawa, H. Fujii, A. Kimura, J. Nucl. Mater. 478 (2016) 1–6.CrossRef
[4]
go back to reference H. Li, A. Nishimura, T. Muroga, T. Nagasaka, J. Nucl. Mater. 367–370 (2007) 147–152.CrossRef H. Li, A. Nishimura, T. Muroga, T. Nagasaka, J. Nucl. Mater. 367–370 (2007) 147–152.CrossRef
[5]
go back to reference Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, J. Nucl. Mater. 367–370 (2007) 117–121.CrossRef Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, J. Nucl. Mater. 367–370 (2007) 117–121.CrossRef
[6]
go back to reference X. Chen, A. Bhattacharya, M.A. Sokolov, L.N. Clowers, Y. Yamamoto, T. Graening, K.D. Linton, Y. Katoh, M. Rieth, Fusion Eng. Des. 146 (2019) 2227–2232.CrossRef X. Chen, A. Bhattacharya, M.A. Sokolov, L.N. Clowers, Y. Yamamoto, T. Graening, K.D. Linton, Y. Katoh, M. Rieth, Fusion Eng. Des. 146 (2019) 2227–2232.CrossRef
[7]
go back to reference N.V. Luzginova, J.W. Rensman, M. Jong, P. ten Pierick, T. Bakker, H. Nolles, J. Nucl. Mater. 455 (2014) 21–25.CrossRef N.V. Luzginova, J.W. Rensman, M. Jong, P. ten Pierick, T. Bakker, H. Nolles, J. Nucl. Mater. 455 (2014) 21–25.CrossRef
[8]
go back to reference X. Chen, Y. Huang, B. Madigan, J. Zhou, Fusion Eng. Des. 87 (2012) 1639–1646.CrossRef X. Chen, Y. Huang, B. Madigan, J. Zhou, Fusion Eng. Des. 87 (2012) 1639–1646.CrossRef
[9]
go back to reference P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, J. Nucl. Mater. 442 (2013) S9–S12.CrossRef P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, J. Nucl. Mater. 442 (2013) S9–S12.CrossRef
[10]
go back to reference P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, Plasma Sci. Technol. 15 (2013) 133–136.CrossRef P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, Plasma Sci. Technol. 15 (2013) 133–136.CrossRef
[11]
go back to reference W. Jiang, Z. Xia, J. Xu, D. Zhao, S. Xia, L. Wang, Fusion Eng. Des. 157 (2020) 111646.CrossRef W. Jiang, Z. Xia, J. Xu, D. Zhao, S. Xia, L. Wang, Fusion Eng. Des. 157 (2020) 111646.CrossRef
[12]
go back to reference J. Lei, J. Xie, S. Zhou, H. Song, X. Song, X. Zhou, Opt. Laser Technol. 111 (2019) 271–283.CrossRef J. Lei, J. Xie, S. Zhou, H. Song, X. Song, X. Zhou, Opt. Laser Technol. 111 (2019) 271–283.CrossRef
[13]
go back to reference Z. Xia, C. Wang, D. Zhao, R. Zhang, P. Cheng, X. He, Surf. Coat. Technol. 367 (2019) 108–117.CrossRef Z. Xia, C. Wang, D. Zhao, R. Zhang, P. Cheng, X. He, Surf. Coat. Technol. 367 (2019) 108–117.CrossRef
[14]
[15]
go back to reference F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Mater. Sci. Eng. A 758 (2019) 192–201.CrossRef F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Mater. Sci. Eng. A 758 (2019) 192–201.CrossRef
[16]
go back to reference S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Add. Manuf. 8 (2015) 36–62. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Add. Manuf. 8 (2015) 36–62.
[17]
[18]
go back to reference Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63–71.CrossRef Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63–71.CrossRef
[19]
go back to reference H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Mater. Sci. Eng. A 695 (2017) 92–100.CrossRef H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Mater. Sci. Eng. A 695 (2017) 92–100.CrossRef
[20]
[21]
go back to reference M.G. Jiang, Z.W. Chen, J.D. Tong, C.Y. Liu, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Res. Lett. 7 (2019) 426–432.CrossRef M.G. Jiang, Z.W. Chen, J.D. Tong, C.Y. Liu, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Res. Lett. 7 (2019) 426–432.CrossRef
[22]
go back to reference C.Y. Liu, J.D. Tong, M.G. Jiang, Z.W. Chen, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Sci. Eng. A 766 (2019) 138364.CrossRef C.Y. Liu, J.D. Tong, M.G. Jiang, Z.W. Chen, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Sci. Eng. A 766 (2019) 138364.CrossRef
[23]
[24]
go back to reference R.S. Long, W.J. Liu, F. Xing, H.B. Wang, Trans. Nonferrous Met. Soc. China 18 (2008) 691–699.CrossRef R.S. Long, W.J. Liu, F. Xing, H.B. Wang, Trans. Nonferrous Met. Soc. China 18 (2008) 691–699.CrossRef
[25]
go back to reference T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.CrossRef T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.CrossRef
[26]
[27]
[28]
go back to reference I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, Int. J. Mach. Tools Manuf. 49 (2009) 916–923.CrossRef I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, Int. J. Mach. Tools Manuf. 49 (2009) 916–923.CrossRef
[29]
go back to reference P. Mac Ardghail, N. Harrison, S.B. Leen, Int. J. Pressure Vessels Piping 173 (2019) 26–44.CrossRef P. Mac Ardghail, N. Harrison, S.B. Leen, Int. J. Pressure Vessels Piping 173 (2019) 26–44.CrossRef
[30]
[31]
go back to reference J. Wang, S. Lu, L. Rong, D. Li, J. Mater. Process. Technol. 222 (2015) 434–443.CrossRef J. Wang, S. Lu, L. Rong, D. Li, J. Mater. Process. Technol. 222 (2015) 434–443.CrossRef
[32]
[33]
go back to reference T. Hirose, K. Shiba, T. Sawai, S. Jitsukawa, M. Akiba, J. Nucl. Mater. 329 (2004) 324–327.CrossRef T. Hirose, K. Shiba, T. Sawai, S. Jitsukawa, M. Akiba, J. Nucl. Mater. 329 (2004) 324–327.CrossRef
[34]
go back to reference Y. Li, Q. Huang, Y. Wu, Nucl. Phys. Rev. 23 (2006) 151–154. Y. Li, Q. Huang, Y. Wu, Nucl. Phys. Rev. 23 (2006) 151–154.
[35]
[36]
go back to reference Q.S. Wu, S.H. Zheng, Q.Y. Huang, S.J. Liu, Y.Y. Han, J. Nucl. Mater. 442 (2013) S67–S70.CrossRef Q.S. Wu, S.H. Zheng, Q.Y. Huang, S.J. Liu, Y.Y. Han, J. Nucl. Mater. 442 (2013) S67–S70.CrossRef
[37]
go back to reference J. Li, H. Li, W. Peng, T. Xiang, Z. Xu, J. Yang, Mater. Charact. 149 (2019) 206–217.CrossRef J. Li, H. Li, W. Peng, T. Xiang, Z. Xu, J. Yang, Mater. Charact. 149 (2019) 206–217.CrossRef
[38]
[39]
go back to reference T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, J.P. Oliveira, Add. Manuf. 27 (2019) 440–450. T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, J.P. Oliveira, Add. Manuf. 27 (2019) 440–450.
Metadata
Title
Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition
Authors
Qian An
Zhi-xin Xia
Chi Zhang
Zhi-gang Yang
Hao Chen
Publication date
24-06-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 3/2021
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00442-9

Other articles of this Issue 3/2021

Journal of Iron and Steel Research International 3/2021 Go to the issue

Premium Partners