Skip to main content
Top
Published in: Journal of Iron and Steel Research International 3/2021

04-08-2020 | Original Paper

Formation mechanism of surface oxide layer of grain-oriented silicon steel

Authors: Jia-long Qiao, Fei-hu Guo, Sheng-tao Qiu, Xing-zhong Zhang, Hai-jun Wang

Published in: Journal of Iron and Steel Research International | Issue 3/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The surface oxide layer of grain-oriented electrical steels was investigated by scanning electron microscopy. The formation mechanism and the influence on the glass film of the surface oxide layer were analyzed by the calculation of thermodynamics and kinetics. The surface oxide layer with 2.3 μm in thickness is mainly composed of SiO2, a small amount of FeO and Fe2SiO4. During the formation of surface oxide layer, the restriction factor was the diffusion of O in the oxide layer. At the initial stage of the decarburization annealing, FeO would be formed on the surface layer. SiO2 and silicate particles rapidly nucleated, grew and formed a granular oxide layer in the subsurface. As the oxidation layer thickens, the nucleation of new particles decreases, and the growth of oxide particles would be dominant. A lamellar oxide layer was formed between the surface oxide layer and the steel matrix, and eventually formed a typical three-layer structure. During the high temperature annealing, MgO mainly reacted with SiO2 and Fe2SiO4 in the surface oxide layer to form Mg2SiO4 and Fe2SiO4 would respond first, thus forming the glass film with average thickness of 4.87 μm.
Literature
[1]
go back to reference Z.Z. He, Y. Zhao, H.W. Luo, Electrical steel, Metallurgical Industry Press, Beijing, China, 2012. Z.Z. He, Y. Zhao, H.W. Luo, Electrical steel, Metallurgical Industry Press, Beijing, China, 2012.
[2]
go back to reference S.T. Qiu, B. Fu, L. Xiang, G.G. Cheng, Iron and Steel 48 (2013) No. 3, 6–13. S.T. Qiu, B. Fu, L. Xiang, G.G. Cheng, Iron and Steel 48 (2013) No. 3, 6–13.
[3]
go back to reference M.D.G.M.M. Cesar, M.J. Mantel, J. Magn. Magn. Mater. 254–255 (2003) 337–339.CrossRef M.D.G.M.M. Cesar, M.J. Mantel, J. Magn. Magn. Mater. 254–255 (2003) 337–339.CrossRef
[4]
go back to reference S. Jung, M.S. Kwon, S.B. Kim, K.S. Shin, Surf. Interface Anal. 45 (2013) 1119–1128.CrossRef S. Jung, M.S. Kwon, S.B. Kim, K.S. Shin, Surf. Interface Anal. 45 (2013) 1119–1128.CrossRef
[5]
go back to reference S. Jung, M.S. Kwon, J. Park, S.B. Kim, Y. Huh, ISIJ Int. 51 (2011) 1163–1168.CrossRef S. Jung, M.S. Kwon, J. Park, S.B. Kim, Y. Huh, ISIJ Int. 51 (2011) 1163–1168.CrossRef
[6]
go back to reference S. Jung, J. Park, M. Han, S.B. Kim, Surf. Interface Anal. 44 (2012) 270–275.CrossRef S. Jung, J. Park, M. Han, S.B. Kim, Surf. Interface Anal. 44 (2012) 270–275.CrossRef
[7]
go back to reference H. Toda, K. Sato, M. Komatsubara, J. Mater. Eng. Perform. 6 (1997) 722–727.CrossRef H. Toda, K. Sato, M. Komatsubara, J. Mater. Eng. Perform. 6 (1997) 722–727.CrossRef
[8]
go back to reference D. Poultney, D. Snell, J. Magn. Magn. Mater. 320 (2008) No. 20, e645–e648.CrossRef D. Poultney, D. Snell, J. Magn. Magn. Mater. 320 (2008) No. 20, e645–e648.CrossRef
[9]
go back to reference J.W. Li, W.H. Yu, S.Z. Zhang, S.T. Hu, H. Yang, Wuhan Iron and Steel Corporation Technology 55 (2017) No. 4, 35–39. J.W. Li, W.H. Yu, S.Z. Zhang, S.T. Hu, H. Yang, Wuhan Iron and Steel Corporation Technology 55 (2017) No. 4, 35–39.
[10]
go back to reference J.W. Li, W.H. Yu, S.Z. Zhang, L.H. Yi, X.D. Wen, Q. Tan, X.X. Huang, Method for determination of silica in surface oxide layer of silicon steel, Chinese patent, CN201210196950.7, 2012-10-03. J.W. Li, W.H. Yu, S.Z. Zhang, L.H. Yi, X.D. Wen, Q. Tan, X.X. Huang, Method for determination of silica in surface oxide layer of silicon steel, Chinese patent, CN201210196950.7, 2012-10-03.
[12]
[13]
go back to reference X.L. Guo, Y. Gao, N.Z. Yan, X.G. Luo, S.L. Zhao, M. Liu, Trans. Mater. Heat Treat. 39 (2018) No. 3, 93–99. X.L. Guo, Y. Gao, N.Z. Yan, X.G. Luo, S.L. Zhao, M. Liu, Trans. Mater. Heat Treat. 39 (2018) No. 3, 93–99.
[14]
go back to reference Y. Guo, F.Q. Dai, S.T. Hu, Y. Gao, Z.H. Luo, J. Iron Steel Res. 29 (2017) 1024–1029. Y. Guo, F.Q. Dai, S.T. Hu, Y. Gao, Z.H. Luo, J. Iron Steel Res. 29 (2017) 1024–1029.
[16]
go back to reference S. Yamazaki, F. Takahashi, T. Kubota, K. Yanagihara, Mater. Corros. 62 (2011) 476–480.CrossRef S. Yamazaki, F. Takahashi, T. Kubota, K. Yanagihara, Mater. Corros. 62 (2011) 476–480.CrossRef
[17]
go back to reference Z.Y. Ye, Z.D. Yu, J.L. You, S.B. Zheng, X.H. Li, Q. Gao, Shanghai Met. 37 (2015) No. 6, 1–4. Z.Y. Ye, Z.D. Yu, J.L. You, S.B. Zheng, X.H. Li, Q. Gao, Shanghai Met. 37 (2015) No. 6, 1–4.
[18]
[19]
go back to reference G.C. Yan, C.X. He, L. Meng, G. Ma, X.M. Wu, J. Mater. Eng. 43 (2015) No. 12, 89–94. G.C. Yan, C.X. He, L. Meng, G. Ma, X.M. Wu, J. Mater. Eng. 43 (2015) No. 12, 89–94.
[20]
go back to reference B. Fu, L. Xiang, S.T. Qiu, G.G. Cheng, Chin. J. Process Eng. 14 (2014) 173–180. B. Fu, L. Xiang, S.T. Qiu, G.G. Cheng, Chin. J. Process Eng. 14 (2014) 173–180.
[21]
go back to reference C.C. Silveira, M.A.D. Cunha, V.T.L. Buono, J. Magn. Magn. Mater. 358–359 (2014) 65–69.CrossRef C.C. Silveira, M.A.D. Cunha, V.T.L. Buono, J. Magn. Magn. Mater. 358–359 (2014) 65–69.CrossRef
[22]
go back to reference Y.J. Fu, Q.W. Jiang, B.C. Wang, P. Yang, W.X. Jin, J. Iron Steel Res. Int. 20 (2013) No. 11, 105–110.CrossRef Y.J. Fu, Q.W. Jiang, B.C. Wang, P. Yang, W.X. Jin, J. Iron Steel Res. Int. 20 (2013) No. 11, 105–110.CrossRef
[23]
go back to reference M.D.G.M.M. Cesar, C.C. Silveira, S.C. Paolinelli, S. Cicale, Aip Adv. 8 (2018) No. 4, 1–7. M.D.G.M.M. Cesar, C.C. Silveira, S.C. Paolinelli, S. Cicale, Aip Adv. 8 (2018) No. 4, 1–7.
[24]
go back to reference D.R. Pei, X.H. Fang, Wuhan Iron and Steel Corporation Technology 36 (1998) No. 1, 17–20. D.R. Pei, X.H. Fang, Wuhan Iron and Steel Corporation Technology 36 (1998) No. 1, 17–20.
[25]
[26]
go back to reference W.G. Morris, J.W. Shilling, D.R. Fecich, P. Rao, IEEE Trans. Magn. 14 (1978) 14–17.CrossRef W.G. Morris, J.W. Shilling, D.R. Fecich, P. Rao, IEEE Trans. Magn. 14 (1978) 14–17.CrossRef
[27]
[28]
go back to reference B. Fukuda, K. Satoh, T. Ichida, Y. Itoh, H. Shimanak, IEEE Trans. Magn. 17 (1981) 2878–2880.CrossRef B. Fukuda, K. Satoh, T. Ichida, Y. Itoh, H. Shimanak, IEEE Trans. Magn. 17 (1981) 2878–2880.CrossRef
[29]
go back to reference H. Shimanaka, Y. Ito, K. Matsumara, B. Fukuda, J. Magn. Magn. Mater. 26 (1982) 57–64.CrossRef H. Shimanaka, Y. Ito, K. Matsumara, B. Fukuda, J. Magn. Magn. Mater. 26 (1982) 57–64.CrossRef
[30]
go back to reference T. Konno, Y. Suga, T. Nozawa, K. Honma, J. Appl. Phys. 57 (1985) 4214–4216.CrossRef T. Konno, Y. Suga, T. Nozawa, K. Honma, J. Appl. Phys. 57 (1985) 4214–4216.CrossRef
[31]
go back to reference M. Komatsubara, Y. Hayakawa, K. Iwamoto, M. Watanabe, Decarburized steel sheet for thin oriented silicon steel sheet having improved coating magnetic characteristics and method of producing the same, USA patent, US5571342, 1996-11-05. M. Komatsubara, Y. Hayakawa, K. Iwamoto, M. Watanabe, Decarburized steel sheet for thin oriented silicon steel sheet having improved coating magnetic characteristics and method of producing the same, USA patent, US5571342, 1996-11-05.
[32]
[33]
go back to reference M. Fukumoto, S. Maeda, S. Hayashi, T. Narita, Oxid. Met. 55 (2001) 401–422.CrossRef M. Fukumoto, S. Maeda, S. Hayashi, T. Narita, Oxid. Met. 55 (2001) 401–422.CrossRef
[34]
go back to reference M. Diéz-Ercilla, T. Ros-Yáñez, R. Petrov, Y. Houbaert, R. Colás, Corros. Eng. Sci. Technol. 39 (2004) 295–300.CrossRef M. Diéz-Ercilla, T. Ros-Yáñez, R. Petrov, Y. Houbaert, R. Colás, Corros. Eng. Sci. Technol. 39 (2004) 295–300.CrossRef
[35]
[36]
go back to reference S.C. Ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Corros. Sci. 87 (2014) 101–110.CrossRef S.C. Ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Corros. Sci. 87 (2014) 101–110.CrossRef
[37]
[38]
go back to reference M. Kowalski, P.J. Spencer, D. Neuschütz, Slag atlas, V.S. GmbH, Düsseldorf, Germany, 1981. M. Kowalski, P.J. Spencer, D. Neuschütz, Slag atlas, V.S. GmbH, Düsseldorf, Germany, 1981.
[39]
[40]
[41]
go back to reference L.L. Liu, Q.Q. Guo, S. Liu, C.S. Ni, Y. Niu, Corros. Sci. 98 (2015) 507–515.CrossRef L.L. Liu, Q.Q. Guo, S. Liu, C.S. Ni, Y. Niu, Corros. Sci. 98 (2015) 507–515.CrossRef
[42]
go back to reference T.F Li, High temperature oxidation and hot corrosion of metals, Chemical Industry Press, Beijing, China, 2003. T.F Li, High temperature oxidation and hot corrosion of metals, Chemical Industry Press, Beijing, China, 2003.
Metadata
Title
Formation mechanism of surface oxide layer of grain-oriented silicon steel
Authors
Jia-long Qiao
Fei-hu Guo
Sheng-tao Qiu
Xing-zhong Zhang
Hai-jun Wang
Publication date
04-08-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 3/2021
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00464-3

Other articles of this Issue 3/2021

Journal of Iron and Steel Research International 3/2021 Go to the issue

Premium Partners