Skip to main content
Top
Published in: Metal Science and Heat Treatment 5-6/2017

03-10-2017

Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions

Authors: A. G. Mochugovskii, A. V. Mikhailovskaya, V. S. Levchenko, V. K. Portnoi

Published in: Metal Science and Heat Treatment | Issue 5-6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure, mechanical properties and superplasticity indices of sheets of aluminum alloy Al – 3% Mg with 0.3% Zr and 0.1% Ti are studied. Use of low-temperature homogenizing (at 360°C) and two-stage hot rolling (at 360 and 420°C) with intermediate annealing at 420°C (3 h) provides quite good thermal stability of alloy grain structure and improved strength properties at room temperature. The alloy exhibits signs of superplasticity with a constant deformation rate of 5 × 10–3 sec–1 and retains a virtually unrecrystallized structure after 200% deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here and subsequently through the test alloying element content is shown in weight factions, expressed as a %.
 
Literature
1.
go back to reference V. I. Elagin, Alloying Wrought Aluminum Alloys with Transition Metals [in Russian], Metallurgiya, Moscow (1975). V. I. Elagin, Alloying Wrought Aluminum Alloys with Transition Metals [in Russian], Metallurgiya, Moscow (1975).
2.
go back to reference K. Kannan, C. H. Johnson and C. H. Hamilton, “A study of superplasticity in a modified 5083 Al –Mg – Mn alloy,” Metall. Mater. Trans. A, 29A, 1220 (1998). K. Kannan, C. H. Johnson and C. H. Hamilton, “A study of superplasticity in a modified 5083 Al –Mg – Mn alloy,” Metall. Mater. Trans. A, 29A, 1220 (1998).
3.
go back to reference D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al – Mg alloys” Mater. Sci. Eng. A, 357, 188 – 195 (2003).CrossRef D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al – Mg alloys” Mater. Sci. Eng. A, 357, 188 – 195 (2003).CrossRef
4.
go back to reference R. Verma, A. K. Ghosh, S. Kimand C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci. Eng. A, 191, 143 – 150 (1995).CrossRef R. Verma, A. K. Ghosh, S. Kimand C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci. Eng. A, 191, 143 – 150 (1995).CrossRef
5.
go back to reference A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al – Mg based alloys,” Mater. Sci. Eng. A, 627, 31 – 41 (2015).CrossRef A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al – Mg based alloys,” Mater. Sci. Eng. A, 627, 31 – 41 (2015).CrossRef
6.
go back to reference J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys,” Acta Mater., 49, 599 – 613 (2001).CrossRef J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys,” Acta Mater., 49, 599 – 613 (2001).CrossRef
7.
go back to reference Wu Ling-Mei, Wang Wen-Hsiung, Hsu Yung-Fu, and Trong Shan, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al – Zn – Mg – Sc – Zr alloy,” J. Alloys Compounds, 456, 163 – 169 (2008).CrossRef Wu Ling-Mei, Wang Wen-Hsiung, Hsu Yung-Fu, and Trong Shan, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al – Zn – Mg – Sc – Zr alloy,” J. Alloys Compounds, 456, 163 – 169 (2008).CrossRef
8.
go back to reference Christian B. Fuller, David N. Seidman, and David C. Dunand, “Mechanical properties of Al3 (Sc, Zr) alloys at ambient and elevated temperatures,” Acta Mater., 51, 4803 – 4814 (2003). Christian B. Fuller, David N. Seidman, and David C. Dunand, “Mechanical properties of Al3 (Sc, Zr) alloys at ambient and elevated temperatures,” Acta Mater., 51, 4803 – 4814 (2003).
9.
go back to reference M. Vlach, I. Stulikova, B. Smola, et al., “Precipitation in cold-rolled Al – Sc – Zr and Al – Mn – Sc – Zr alloys prepared by powder metallurgy,” Mater. Charact., 86, 59 – 68 (2013).CrossRef M. Vlach, I. Stulikova, B. Smola, et al., “Precipitation in cold-rolled Al – Sc – Zr and Al – Mn – Sc – Zr alloys prepared by powder metallurgy,” Mater. Charact., 86, 59 – 68 (2013).CrossRef
10.
go back to reference A. Gholinia, F. J. Humphreys, and P. B. Prangnell, “Production of ultra-fine grain microstructures in Al – Mg alloys by conventional rolling,” Acta Mater., 50, 4461 – 4476 (2002).CrossRef A. Gholinia, F. J. Humphreys, and P. B. Prangnell, “Production of ultra-fine grain microstructures in Al – Mg alloys by conventional rolling,” Acta Mater., 50, 4461 – 4476 (2002).CrossRef
11.
go back to reference Wang Ying, Pan Qing-lin, Song Yan-fang, et al., “Recrystallization of Al – 5.8Mg – Mn – Sc – Zr alloy,” Trans. Nonferrous Met. Soc. China, 23, 3235 – 3241 (201). Wang Ying, Pan Qing-lin, Song Yan-fang, et al., “Recrystallization of Al – 5.8Mg – Mn – Sc – Zr alloy,” Trans. Nonferrous Met. Soc. China, 23, 3235 – 3241 (201).
12.
go back to reference R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975). R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).
13.
go back to reference B. M. Watts, M. J. Stowell, B. L. Baikie, DGE Owen, “Superplasticity in Al – Cu – Zr Alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976). B. M. Watts, M. J. Stowell, B. L. Baikie, DGE Owen, “Superplasticity in Al – Cu – Zr Alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).
14.
go back to reference A. V. Mikhailovskaya, Yu. V. Sinageikina, A. D. Kotov, and V. K. Portnoi, “Aluminum alloys with enhanced strength for superplastic forming,” Metal Sci. Heat Treat., 54(7), 345 – 348 (2012).CrossRef A. V. Mikhailovskaya, Yu. V. Sinageikina, A. D. Kotov, and V. K. Portnoi, “Aluminum alloys with enhanced strength for superplastic forming,” Metal Sci. Heat Treat., 54(7), 345 – 348 (2012).CrossRef
15.
go back to reference A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al – 11% Zn – 3% Mg – 0.8% Cu – 0.3% Zr with Fe and Ni additives,” Metal Sci. Heat Treat., 55(7 – 8), 364 – 367 (2013).CrossRef A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al – 11% Zn – 3% Mg – 0.8% Cu – 0.3% Zr with Fe and Ni additives,” Metal Sci. Heat Treat., 55(7 – 8), 364 – 367 (2013).CrossRef
16.
go back to reference S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al – Mg alloys,” Acta Mater., 50, 563 – 564 (2002). S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al – Mg alloys,” Acta Mater., 50, 563 – 564 (2002).
17.
go back to reference Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al – Mg – Zr alloy,” Mater. Sci. Eng. A, 351, 148 – 153 (2003).CrossRef Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al – Mg – Zr alloy,” Mater. Sci. Eng. A, 351, 148 – 153 (2003).CrossRef
18.
go back to reference Z. Y. Ma, R. S. Mishra, M.W. Mahoney, and R. Grimes, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36A, 1458 (2005). Z. Y. Ma, R. S. Mishra, M.W. Mahoney, and R. Grimes, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36A, 1458 (2005).
19.
go back to reference T. G. Nieh and J. Wadsworth, “Effects of Zr on the high strainrate superplasticity of 2124 Al,” Scr. Metall., 28, 1119 – 1124 (1993).CrossRef T. G. Nieh and J. Wadsworth, “Effects of Zr on the high strainrate superplasticity of 2124 Al,” Scr. Metall., 28, 1119 – 1124 (1993).CrossRef
20.
go back to reference A. Mikhaylovskaya, V. Portnoy, A. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Design, 109, 197 – 208 (2016).CrossRef A. Mikhaylovskaya, V. Portnoy, A. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Design, 109, 197 – 208 (2016).CrossRef
21.
go back to reference A. V. Mikhaylovskaya, A. G. Mochugovskiy, A. D. Kotov, et al., “Superplasticity of clad aluminium alloy,” J. Mater. Proc. Technol., 243, 355 – 364 (2017).CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, A. D. Kotov, et al., “Superplasticity of clad aluminium alloy,” J. Mater. Proc. Technol., 243, 355 – 364 (2017).CrossRef
22.
go back to reference V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier Science, Amsterdam, Nederland (2007). V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier Science, Amsterdam, Nederland (2007).
23.
go back to reference E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al – Mg – Sc – Zr alloy,” Mater. Sci. and Eng. A, 538, 386 – 390 (2012).CrossRef E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al – Mg – Sc – Zr alloy,” Mater. Sci. and Eng. A, 538, 386 – 390 (2012).CrossRef
24.
go back to reference Yong-yi Peng, Zhi-min Yin, Bo Nie, and Li Zhong, “Effect of minor Sc and Zr on superplasticity of Al – Mg – Mn alloys,” Trans. Nonferrous Metall. Soc. China, 17, 744 – 750 (2007).CrossRef Yong-yi Peng, Zhi-min Yin, Bo Nie, and Li Zhong, “Effect of minor Sc and Zr on superplasticity of Al – Mg – Mn alloys,” Trans. Nonferrous Metall. Soc. China, 17, 744 – 750 (2007).CrossRef
25.
go back to reference F. C. Liu, Z. Y. Ma, and L. Q. Chen, “Low-temperature superplasticity of Al – Mg – Sc alloy produced by friction stir processing,” Scr. Mater., 60, 968 – 971 (2009).CrossRef F. C. Liu, Z. Y. Ma, and L. Q. Chen, “Low-temperature superplasticity of Al – Mg – Sc alloy produced by friction stir processing,” Scr. Mater., 60, 968 – 971 (2009).CrossRef
26.
go back to reference F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al – Mg – Sc alloy,” Scr. Mater. 50, 511 – 516 (2004).CrossRef F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al – Mg – Sc alloy,” Scr. Mater. 50, 511 – 516 (2004).CrossRef
27.
go back to reference V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al – Mg – Mn alloys,” J. Alloys Compounds, 581, 313 – 317 (2013).CrossRef V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al – Mg – Mn alloys,” J. Alloys Compounds, 581, 313 – 317 (2013).CrossRef
28.
go back to reference A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, et al., “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al – 4.9 Mg alloy,” Phys. Metals Metallogr., 114(3), 246 – 255 (2013).CrossRef A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, et al., “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al – 4.9 Mg alloy,” Phys. Metals Metallogr., 114(3), 246 – 255 (2013).CrossRef
29.
go back to reference R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975). R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).
30.
go back to reference B. M. Watts, M. J. Stowell, B. L. Baikie, and DGE Owen, “Superplasticity in Al – Cu – Zr alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).CrossRef B. M. Watts, M. J. Stowell, B. L. Baikie, and DGE Owen, “Superplasticity in Al – Cu – Zr alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).CrossRef
31.
go back to reference V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).CrossRef V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).CrossRef
32.
go back to reference K. Turba, P. M’alek, and M. Cieslar, “Superplasticity in an Al – Mg – Zr – Sc alloy produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 462, 91 – 94 (2007).CrossRef K. Turba, P. M’alek, and M. Cieslar, “Superplasticity in an Al – Mg – Zr – Sc alloy produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 462, 91 – 94 (2007).CrossRef
33.
go back to reference M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Nonferrous Metal and Alloy Metallography [in Russian], Gos. Nauch.-Tekhn. Izd. Lit. Chern. Tsvet. Metallurgiya, Moscow (1950). M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Nonferrous Metal and Alloy Metallography [in Russian], Gos. Nauch.-Tekhn. Izd. Lit. Chern. Tsvet. Metallurgiya, Moscow (1950).
34.
go back to reference M. Easton and David St. John, “Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature,” Metall. Mater. Trans. A, 30A, 1623 (1999). M. Easton and David St. John, “Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature,” Metall. Mater. Trans. A, 30A, 1623 (1999).
Metadata
Title
Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions
Authors
A. G. Mochugovskii
A. V. Mikhailovskaya
V. S. Levchenko
V. K. Portnoi
Publication date
03-10-2017
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 5-6/2017
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-017-0156-3

Other articles of this Issue 5-6/2017

Metal Science and Heat Treatment 5-6/2017 Go to the issue

Premium Partners