Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2017

03.10.2017

Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions

verfasst von: A. G. Mochugovskii, A. V. Mikhailovskaya, V. S. Levchenko, V. K. Portnoi

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure, mechanical properties and superplasticity indices of sheets of aluminum alloy Al – 3% Mg with 0.3% Zr and 0.1% Ti are studied. Use of low-temperature homogenizing (at 360°C) and two-stage hot rolling (at 360 and 420°C) with intermediate annealing at 420°C (3 h) provides quite good thermal stability of alloy grain structure and improved strength properties at room temperature. The alloy exhibits signs of superplasticity with a constant deformation rate of 5 × 10–3 sec–1 and retains a virtually unrecrystallized structure after 200% deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here and subsequently through the test alloying element content is shown in weight factions, expressed as a %.
 
Literatur
1.
Zurück zum Zitat V. I. Elagin, Alloying Wrought Aluminum Alloys with Transition Metals [in Russian], Metallurgiya, Moscow (1975). V. I. Elagin, Alloying Wrought Aluminum Alloys with Transition Metals [in Russian], Metallurgiya, Moscow (1975).
2.
Zurück zum Zitat K. Kannan, C. H. Johnson and C. H. Hamilton, “A study of superplasticity in a modified 5083 Al –Mg – Mn alloy,” Metall. Mater. Trans. A, 29A, 1220 (1998). K. Kannan, C. H. Johnson and C. H. Hamilton, “A study of superplasticity in a modified 5083 Al –Mg – Mn alloy,” Metall. Mater. Trans. A, 29A, 1220 (1998).
3.
Zurück zum Zitat D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al – Mg alloys” Mater. Sci. Eng. A, 357, 188 – 195 (2003).CrossRef D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al – Mg alloys” Mater. Sci. Eng. A, 357, 188 – 195 (2003).CrossRef
4.
Zurück zum Zitat R. Verma, A. K. Ghosh, S. Kimand C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci. Eng. A, 191, 143 – 150 (1995).CrossRef R. Verma, A. K. Ghosh, S. Kimand C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci. Eng. A, 191, 143 – 150 (1995).CrossRef
5.
Zurück zum Zitat A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al – Mg based alloys,” Mater. Sci. Eng. A, 627, 31 – 41 (2015).CrossRef A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al – Mg based alloys,” Mater. Sci. Eng. A, 627, 31 – 41 (2015).CrossRef
6.
Zurück zum Zitat J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys,” Acta Mater., 49, 599 – 613 (2001).CrossRef J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys,” Acta Mater., 49, 599 – 613 (2001).CrossRef
7.
Zurück zum Zitat Wu Ling-Mei, Wang Wen-Hsiung, Hsu Yung-Fu, and Trong Shan, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al – Zn – Mg – Sc – Zr alloy,” J. Alloys Compounds, 456, 163 – 169 (2008).CrossRef Wu Ling-Mei, Wang Wen-Hsiung, Hsu Yung-Fu, and Trong Shan, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al – Zn – Mg – Sc – Zr alloy,” J. Alloys Compounds, 456, 163 – 169 (2008).CrossRef
8.
Zurück zum Zitat Christian B. Fuller, David N. Seidman, and David C. Dunand, “Mechanical properties of Al3 (Sc, Zr) alloys at ambient and elevated temperatures,” Acta Mater., 51, 4803 – 4814 (2003). Christian B. Fuller, David N. Seidman, and David C. Dunand, “Mechanical properties of Al3 (Sc, Zr) alloys at ambient and elevated temperatures,” Acta Mater., 51, 4803 – 4814 (2003).
9.
Zurück zum Zitat M. Vlach, I. Stulikova, B. Smola, et al., “Precipitation in cold-rolled Al – Sc – Zr and Al – Mn – Sc – Zr alloys prepared by powder metallurgy,” Mater. Charact., 86, 59 – 68 (2013).CrossRef M. Vlach, I. Stulikova, B. Smola, et al., “Precipitation in cold-rolled Al – Sc – Zr and Al – Mn – Sc – Zr alloys prepared by powder metallurgy,” Mater. Charact., 86, 59 – 68 (2013).CrossRef
10.
Zurück zum Zitat A. Gholinia, F. J. Humphreys, and P. B. Prangnell, “Production of ultra-fine grain microstructures in Al – Mg alloys by conventional rolling,” Acta Mater., 50, 4461 – 4476 (2002).CrossRef A. Gholinia, F. J. Humphreys, and P. B. Prangnell, “Production of ultra-fine grain microstructures in Al – Mg alloys by conventional rolling,” Acta Mater., 50, 4461 – 4476 (2002).CrossRef
11.
Zurück zum Zitat Wang Ying, Pan Qing-lin, Song Yan-fang, et al., “Recrystallization of Al – 5.8Mg – Mn – Sc – Zr alloy,” Trans. Nonferrous Met. Soc. China, 23, 3235 – 3241 (201). Wang Ying, Pan Qing-lin, Song Yan-fang, et al., “Recrystallization of Al – 5.8Mg – Mn – Sc – Zr alloy,” Trans. Nonferrous Met. Soc. China, 23, 3235 – 3241 (201).
12.
Zurück zum Zitat R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975). R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).
13.
Zurück zum Zitat B. M. Watts, M. J. Stowell, B. L. Baikie, DGE Owen, “Superplasticity in Al – Cu – Zr Alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976). B. M. Watts, M. J. Stowell, B. L. Baikie, DGE Owen, “Superplasticity in Al – Cu – Zr Alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).
14.
Zurück zum Zitat A. V. Mikhailovskaya, Yu. V. Sinageikina, A. D. Kotov, and V. K. Portnoi, “Aluminum alloys with enhanced strength for superplastic forming,” Metal Sci. Heat Treat., 54(7), 345 – 348 (2012).CrossRef A. V. Mikhailovskaya, Yu. V. Sinageikina, A. D. Kotov, and V. K. Portnoi, “Aluminum alloys with enhanced strength for superplastic forming,” Metal Sci. Heat Treat., 54(7), 345 – 348 (2012).CrossRef
15.
Zurück zum Zitat A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al – 11% Zn – 3% Mg – 0.8% Cu – 0.3% Zr with Fe and Ni additives,” Metal Sci. Heat Treat., 55(7 – 8), 364 – 367 (2013).CrossRef A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al – 11% Zn – 3% Mg – 0.8% Cu – 0.3% Zr with Fe and Ni additives,” Metal Sci. Heat Treat., 55(7 – 8), 364 – 367 (2013).CrossRef
16.
Zurück zum Zitat S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al – Mg alloys,” Acta Mater., 50, 563 – 564 (2002). S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al – Mg alloys,” Acta Mater., 50, 563 – 564 (2002).
17.
Zurück zum Zitat Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al – Mg – Zr alloy,” Mater. Sci. Eng. A, 351, 148 – 153 (2003).CrossRef Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al – Mg – Zr alloy,” Mater. Sci. Eng. A, 351, 148 – 153 (2003).CrossRef
18.
Zurück zum Zitat Z. Y. Ma, R. S. Mishra, M.W. Mahoney, and R. Grimes, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36A, 1458 (2005). Z. Y. Ma, R. S. Mishra, M.W. Mahoney, and R. Grimes, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36A, 1458 (2005).
19.
Zurück zum Zitat T. G. Nieh and J. Wadsworth, “Effects of Zr on the high strainrate superplasticity of 2124 Al,” Scr. Metall., 28, 1119 – 1124 (1993).CrossRef T. G. Nieh and J. Wadsworth, “Effects of Zr on the high strainrate superplasticity of 2124 Al,” Scr. Metall., 28, 1119 – 1124 (1993).CrossRef
20.
Zurück zum Zitat A. Mikhaylovskaya, V. Portnoy, A. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Design, 109, 197 – 208 (2016).CrossRef A. Mikhaylovskaya, V. Portnoy, A. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Design, 109, 197 – 208 (2016).CrossRef
21.
Zurück zum Zitat A. V. Mikhaylovskaya, A. G. Mochugovskiy, A. D. Kotov, et al., “Superplasticity of clad aluminium alloy,” J. Mater. Proc. Technol., 243, 355 – 364 (2017).CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, A. D. Kotov, et al., “Superplasticity of clad aluminium alloy,” J. Mater. Proc. Technol., 243, 355 – 364 (2017).CrossRef
22.
Zurück zum Zitat V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier Science, Amsterdam, Nederland (2007). V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier Science, Amsterdam, Nederland (2007).
23.
Zurück zum Zitat E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al – Mg – Sc – Zr alloy,” Mater. Sci. and Eng. A, 538, 386 – 390 (2012).CrossRef E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al – Mg – Sc – Zr alloy,” Mater. Sci. and Eng. A, 538, 386 – 390 (2012).CrossRef
24.
Zurück zum Zitat Yong-yi Peng, Zhi-min Yin, Bo Nie, and Li Zhong, “Effect of minor Sc and Zr on superplasticity of Al – Mg – Mn alloys,” Trans. Nonferrous Metall. Soc. China, 17, 744 – 750 (2007).CrossRef Yong-yi Peng, Zhi-min Yin, Bo Nie, and Li Zhong, “Effect of minor Sc and Zr on superplasticity of Al – Mg – Mn alloys,” Trans. Nonferrous Metall. Soc. China, 17, 744 – 750 (2007).CrossRef
25.
Zurück zum Zitat F. C. Liu, Z. Y. Ma, and L. Q. Chen, “Low-temperature superplasticity of Al – Mg – Sc alloy produced by friction stir processing,” Scr. Mater., 60, 968 – 971 (2009).CrossRef F. C. Liu, Z. Y. Ma, and L. Q. Chen, “Low-temperature superplasticity of Al – Mg – Sc alloy produced by friction stir processing,” Scr. Mater., 60, 968 – 971 (2009).CrossRef
26.
Zurück zum Zitat F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al – Mg – Sc alloy,” Scr. Mater. 50, 511 – 516 (2004).CrossRef F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al – Mg – Sc alloy,” Scr. Mater. 50, 511 – 516 (2004).CrossRef
27.
Zurück zum Zitat V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al – Mg – Mn alloys,” J. Alloys Compounds, 581, 313 – 317 (2013).CrossRef V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al – Mg – Mn alloys,” J. Alloys Compounds, 581, 313 – 317 (2013).CrossRef
28.
Zurück zum Zitat A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, et al., “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al – 4.9 Mg alloy,” Phys. Metals Metallogr., 114(3), 246 – 255 (2013).CrossRef A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, et al., “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al – 4.9 Mg alloy,” Phys. Metals Metallogr., 114(3), 246 – 255 (2013).CrossRef
29.
Zurück zum Zitat R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975). R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).
30.
Zurück zum Zitat B. M. Watts, M. J. Stowell, B. L. Baikie, and DGE Owen, “Superplasticity in Al – Cu – Zr alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).CrossRef B. M. Watts, M. J. Stowell, B. L. Baikie, and DGE Owen, “Superplasticity in Al – Cu – Zr alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).CrossRef
31.
Zurück zum Zitat V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).CrossRef V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).CrossRef
32.
Zurück zum Zitat K. Turba, P. M’alek, and M. Cieslar, “Superplasticity in an Al – Mg – Zr – Sc alloy produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 462, 91 – 94 (2007).CrossRef K. Turba, P. M’alek, and M. Cieslar, “Superplasticity in an Al – Mg – Zr – Sc alloy produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 462, 91 – 94 (2007).CrossRef
33.
Zurück zum Zitat M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Nonferrous Metal and Alloy Metallography [in Russian], Gos. Nauch.-Tekhn. Izd. Lit. Chern. Tsvet. Metallurgiya, Moscow (1950). M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Nonferrous Metal and Alloy Metallography [in Russian], Gos. Nauch.-Tekhn. Izd. Lit. Chern. Tsvet. Metallurgiya, Moscow (1950).
34.
Zurück zum Zitat M. Easton and David St. John, “Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature,” Metall. Mater. Trans. A, 30A, 1623 (1999). M. Easton and David St. John, “Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature,” Metall. Mater. Trans. A, 30A, 1623 (1999).
Metadaten
Titel
Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions
verfasst von
A. G. Mochugovskii
A. V. Mikhailovskaya
V. S. Levchenko
V. K. Portnoi
Publikationsdatum
03.10.2017
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2017
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-017-0156-3

Weitere Artikel der Ausgabe 5-6/2017

Metal Science and Heat Treatment 5-6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.