Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2016

25-01-2016

Effect of Water and Fluoride Content of Anodizing Electrolyte on Morphology and Corrosion Behavior of ZrO2-Nanotubes Developed on Zirconium Implant

Authors: M. G. Hosseini, V. Daneshvari-Esfahlan, H. Maleki-Ghaleh

Published in: Journal of Materials Engineering and Performance | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zirconium oxide nanotubes with inner diameter of 30-80 nm were fabricated by anodizing method in glycerol and DMF solution as organic electrolytes containing small amount of ammonium fluoride and water at room temperature. We investigated the effect of water content (1, 3, 5 wt.%) and ammonium fluoride concentration (0.5, 1, 2 wt.%) on the morphology, as well as the zirconia nanotubes diameter and their corrosion resistance in the artificial saliva solution as a biological medium at 37 ± 1 °C. Nanotubes morphology and structure were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray and x-ray diffraction spectroscopy. The FE-SEM results show that the inner diameter of nanotubes rises with increasing the concentration of ammonium fluoride and water content in anodizing electrolyte solutions. The electrochemical impedance spectroscopy and Tafel polarization tests were used to study the corrosion behavior of zirconia NTs electrodes. The results show that the best concentration of ammonium fluoride and water content in anodizing electrolyte, which the samples demonstrated maximum corrosion resistance and regular structure, were at 1 wt.% H2O and 2 wt.% NH4F.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994, 266, p 1961–1966CrossRef C.R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994, 266, p 1961–1966CrossRef
2.
go back to reference S.A. Johnson, P.J. Ollivier, and T.E. Mallouk, Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates, Science, 1999, 283, p 963–965CrossRef S.A. Johnson, P.J. Ollivier, and T.E. Mallouk, Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates, Science, 1999, 283, p 963–965CrossRef
3.
go back to reference P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Ham, R.R. He, and H.-J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Funct. Mater., 2002, 12, p 323–331CrossRef P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Ham, R.R. He, and H.-J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Funct. Mater., 2002, 12, p 323–331CrossRef
4.
go back to reference H. Tsuchiya, J.M. Macak, L. Taveira, and P. Schmuki, Fabrication and Characterization of Smooth High Aspect Ratio Zirconia Nanotubes, Chem. Phys. Lett., 2005, 410, p 188–191CrossRef H. Tsuchiya, J.M. Macak, L. Taveira, and P. Schmuki, Fabrication and Characterization of Smooth High Aspect Ratio Zirconia Nanotubes, Chem. Phys. Lett., 2005, 410, p 188–191CrossRef
5.
go back to reference L. Guo, J. Zhao, X. Wang, R. Xu, and Y. Li, Synthesis and Growth Mechanism of Zirconia Nanotubes by Anodization in Electrolyte Containing Cl−, J. Solid State Electrochem., 2009, 13, p 1321–1326CrossRef L. Guo, J. Zhao, X. Wang, R. Xu, and Y. Li, Synthesis and Growth Mechanism of Zirconia Nanotubes by Anodization in Electrolyte Containing Cl, J. Solid State Electrochem., 2009, 13, p 1321–1326CrossRef
6.
go back to reference J. Zhao, R. Xu, X. Wang, and Y. Li, In Situ Synthesis of Zirconia Nanotube Crystallines by Direct Anodization, Corros. Sci., 2008, 50, p 1593–1597CrossRef J. Zhao, R. Xu, X. Wang, and Y. Li, In Situ Synthesis of Zirconia Nanotube Crystallines by Direct Anodization, Corros. Sci., 2008, 50, p 1593–1597CrossRef
7.
go back to reference N. Izu, W. Shin, I. Matsubara, N. Murayama, N. Oh-hori, and M. Itou, Temperature Independent Resistive Oxygen Sensors Using Solid Electrolyte Zirconia as a New Temperature Compensating Material, Sensors Actuators B: Chem, 2005, 108, p 216–222CrossRef N. Izu, W. Shin, I. Matsubara, N. Murayama, N. Oh-hori, and M. Itou, Temperature Independent Resistive Oxygen Sensors Using Solid Electrolyte Zirconia as a New Temperature Compensating Material, Sensors Actuators B: Chem, 2005, 108, p 216–222CrossRef
8.
go back to reference S. Lvov, Progress on Yttria-Stabilized Zirconia Sensors for Hydrothermal pH Measurements, Chem Geol, 2003, 198, p 141–162CrossRef S. Lvov, Progress on Yttria-Stabilized Zirconia Sensors for Hydrothermal pH Measurements, Chem Geol, 2003, 198, p 141–162CrossRef
9.
go back to reference J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, 2006, 27, p 535–543CrossRef J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, 2006, 27, p 535–543CrossRef
10.
go back to reference M. Ferrais, H.E. Verne, P. Appendino, C. Moisescu, A. Krajewski, and A. Ravaglioli, Coatings on Zirconia for Medical Applications, Biomaterials, 2000, 21, p 765–773CrossRef M. Ferrais, H.E. Verne, P. Appendino, C. Moisescu, A. Krajewski, and A. Ravaglioli, Coatings on Zirconia for Medical Applications, Biomaterials, 2000, 21, p 765–773CrossRef
11.
go back to reference M. Bosetti, E. Verne, M. Verne, M. Ferraris, A. Ravaglioli, and M. Cannas, In Vitro Characterisation of Zirconia Coated by Bioactive Glass, Biomaterials, 2001, 22, p 987–994CrossRef M. Bosetti, E. Verne, M. Verne, M. Ferraris, A. Ravaglioli, and M. Cannas, In Vitro Characterisation of Zirconia Coated by Bioactive Glass, Biomaterials, 2001, 22, p 987–994CrossRef
12.
go back to reference J. Bao, C. Tie, Z. Xu, Q. Ma, J. Hong, H. Sang, and D. Sheng, An Array of Concentric Composite Nanostructures of Zirconia Nanotubes/Cobalt Nanowires: Preparation and Magnetic Properties, Adv. Mater., 2002, 14, p 44–47CrossRef J. Bao, C. Tie, Z. Xu, Q. Ma, J. Hong, H. Sang, and D. Sheng, An Array of Concentric Composite Nanostructures of Zirconia Nanotubes/Cobalt Nanowires: Preparation and Magnetic Properties, Adv. Mater., 2002, 14, p 44–47CrossRef
13.
go back to reference L.-N. Wang and J.-L. Luo, Electrochemical Behaviour of Anodic Zirconium Oxide Nanotubes in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258, p 4830–4833CrossRef L.-N. Wang and J.-L. Luo, Electrochemical Behaviour of Anodic Zirconium Oxide Nanotubes in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258, p 4830–4833CrossRef
14.
go back to reference V.S. Saji and C. Chue, Electrochemical Corrosion Behaviour of Nanotubular Ti-13Nb-13Zr Alloy in Ringer’s Solution, Corros. Sci., 2009, 51, p 1658–1663CrossRef V.S. Saji and C. Chue, Electrochemical Corrosion Behaviour of Nanotubular Ti-13Nb-13Zr Alloy in Ringer’s Solution, Corros. Sci., 2009, 51, p 1658–1663CrossRef
15.
go back to reference C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Zirconia Nanotubes, Chem. Commun., 1997, 16, p 1581–1582CrossRef C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Zirconia Nanotubes, Chem. Commun., 1997, 16, p 1581–1582CrossRef
16.
go back to reference J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng, and Y. Zhou, An Array of Concentric Composite Nanostructure of Metal Nanowires Encapsulated in Zirconia Nanotubes: Preparation, Characterization, and Magnetic Properties, Chem. Mater., 2002, 14, p 4709–4713CrossRef J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng, and Y. Zhou, An Array of Concentric Composite Nanostructure of Metal Nanowires Encapsulated in Zirconia Nanotubes: Preparation, Characterization, and Magnetic Properties, Chem. Mater., 2002, 14, p 4709–4713CrossRef
17.
go back to reference A. Kaczmarek, T. Klekiel, and E. Krasicka-Cydzik, Fluoride Concentration Effect on the Anodic Growth of Self-aligned Oxide Nanotube Array on Ti6Al7Nb Alloy, Surf. Interface Anal., 2010, 42, p 510–514CrossRef A. Kaczmarek, T. Klekiel, and E. Krasicka-Cydzik, Fluoride Concentration Effect on the Anodic Growth of Self-aligned Oxide Nanotube Array on Ti6Al7Nb Alloy, Surf. Interface Anal., 2010, 42, p 510–514CrossRef
18.
go back to reference M.R. Golobostanfard et al., Effect of Fluoride Concentration and Water Content on Morphology of Titania Nanotubes in Ethylene Glycol Solution, Adv. Mater. Res., 2013, 829, p 907–911CrossRef M.R. Golobostanfard et al., Effect of Fluoride Concentration and Water Content on Morphology of Titania Nanotubes in Ethylene Glycol Solution, Adv. Mater. Res., 2013, 829, p 907–911CrossRef
19.
go back to reference H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, Self-organized Porous TiO2 and ZrO2 Produced by Anodization, Corros. Sci., 2005, 47, p 3324–3335CrossRef H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, Self-organized Porous TiO2 and ZrO2 Produced by Anodization, Corros. Sci., 2005, 47, p 3324–3335CrossRef
20.
go back to reference H. Tsuchiya and P. Schmuki, Thick Self-organized Porous Zirconium Oxide Formed in H2SO4/NH4F Electrolytes, Electrochem. Commun., 2004, 6, p 1131–1134CrossRef H. Tsuchiya and P. Schmuki, Thick Self-organized Porous Zirconium Oxide Formed in H2SO4/NH4F Electrolytes, Electrochem. Commun., 2004, 6, p 1131–1134CrossRef
21.
go back to reference M.G. Hosseini, V. Daneshvari-Esfahlan, and R. Ordikhani-Seyedlar, Fabrication, Characterisation and Investigation of Zirconium Oxide Corrosion Behaviour on Resistance of Zirconium Oxide Nanotubes in Artificial Saliva as Biological Environment, Corros. Eng. Sci. Technol., 2015, 50, p 533–537CrossRef M.G. Hosseini, V. Daneshvari-Esfahlan, and R. Ordikhani-Seyedlar, Fabrication, Characterisation and Investigation of Zirconium Oxide Corrosion Behaviour on Resistance of Zirconium Oxide Nanotubes in Artificial Saliva as Biological Environment, Corros. Eng. Sci. Technol., 2015, 50, p 533–537CrossRef
22.
go back to reference L. Yuting, Y. Dongliang, Y. Song, L. Dongdong, Zh Shoayu, M. Weihua, W. Zhenhao, and Zh Xufei, Effect of Water Content on Ionic Current, Electronic Current, and Nanotube Morphology in Ti Anodizing Process, J. Solid State Electrochem., 2015, 19, p 1403–1409CrossRef L. Yuting, Y. Dongliang, Y. Song, L. Dongdong, Zh Shoayu, M. Weihua, W. Zhenhao, and Zh Xufei, Effect of Water Content on Ionic Current, Electronic Current, and Nanotube Morphology in Ti Anodizing Process, J. Solid State Electrochem., 2015, 19, p 1403–1409CrossRef
23.
go back to reference S. Ismail, Z.A. Ahmad, A. Berenov, and Z. Lockman, Effect of Applied Voltage and Fluoride Ion Content on the Formation of Zirconia Nanotube Arrays by Anodic Oxidation of Zirconium, Corros. Sci., 2011, 53, p 1156–1164CrossRef S. Ismail, Z.A. Ahmad, A. Berenov, and Z. Lockman, Effect of Applied Voltage and Fluoride Ion Content on the Formation of Zirconia Nanotube Arrays by Anodic Oxidation of Zirconium, Corros. Sci., 2011, 53, p 1156–1164CrossRef
24.
go back to reference H. Yin, H. Liu, W.Z. Shen, The Large Diameter and Fast Growth of Self-organized TiO2 Nanotube Arrays Achieved Via Electrochemical Anodization, Nanotechnology, (2010), 21, 035601 (p 7). H. Yin, H. Liu, W.Z. Shen, The Large Diameter and Fast Growth of Self-organized TiO2 Nanotube Arrays Achieved Via Electrochemical Anodization, Nanotechnology, (2010), 21, 035601 (p 7).
25.
go back to reference D. Fang, J. Yu, Z. Luo, S. Liu, K. Huang, and W. Xu, Fabrication Parameter-Dependent Morphologies of Self-organized ZrO2 Nanotubes During Anodization, J. Solid State Electrochem., 2012, 16, p 1219–1228CrossRef D. Fang, J. Yu, Z. Luo, S. Liu, K. Huang, and W. Xu, Fabrication Parameter-Dependent Morphologies of Self-organized ZrO2 Nanotubes During Anodization, J. Solid State Electrochem., 2012, 16, p 1219–1228CrossRef
26.
go back to reference T. Hiroaki, M.M. Jan, T. Luciano, and S. Patrik, Fabrication and Characterization of Smooth High Aspect Ratio Zirconia Nanotubes, Chem Phys Lett, 2005, 410, p 188–191CrossRef T. Hiroaki, M.M. Jan, T. Luciano, and S. Patrik, Fabrication and Characterization of Smooth High Aspect Ratio Zirconia Nanotubes, Chem Phys Lett, 2005, 410, p 188–191CrossRef
27.
go back to reference J. Zhao, X. Wang, R. Xu, F. Meng, L. Guo, and Y. Li, Fabrication of High Aspect Ratio Zirconia Nanotube Arrays by Anodization of Zirconium Foils, Mater. Lett., 2008, 62, p 4428–4430CrossRef J. Zhao, X. Wang, R. Xu, F. Meng, L. Guo, and Y. Li, Fabrication of High Aspect Ratio Zirconia Nanotube Arrays by Anodization of Zirconium Foils, Mater. Lett., 2008, 62, p 4428–4430CrossRef
28.
go back to reference A. Elsanousi, J. Zhang, H.M.H. Fadlalla, F. Zhang, H. Wang, X. Ding, Z. Huand, and C. Tang, Self-organized TiO2 Nanotubes with Controlled Dimensions by Anodic Oxidation, J Mater Sci., 2008, 43, p 7219CrossRef A. Elsanousi, J. Zhang, H.M.H. Fadlalla, F. Zhang, H. Wang, X. Ding, Z. Huand, and C. Tang, Self-organized TiO2 Nanotubes with Controlled Dimensions by Anodic Oxidation, J Mater Sci., 2008, 43, p 7219CrossRef
29.
go back to reference G. Sharma, M.V. Pishko, and C.A. Grimes, Fabrication of Metallic Nanowire Arrays by Electrodeposition into Nanoporous Alumina Membranes: Effect of Barrier Layer, J. Mater. Sci., 2007, 42, p 4738–4744CrossRef G. Sharma, M.V. Pishko, and C.A. Grimes, Fabrication of Metallic Nanowire Arrays by Electrodeposition into Nanoporous Alumina Membranes: Effect of Barrier Layer, J. Mater. Sci., 2007, 42, p 4738–4744CrossRef
30.
go back to reference C. Liu, Y. Wang, M. Wang, W. Huang, and P.K. Chu, Electrochemical Stability of TiO2 Nanotubes with Different Diameters in Artificial Saliva, Surface Coat. Technol., 2011, 206, p 63–67CrossRef C. Liu, Y. Wang, M. Wang, W. Huang, and P.K. Chu, Electrochemical Stability of TiO2 Nanotubes with Different Diameters in Artificial Saliva, Surface Coat. Technol., 2011, 206, p 63–67CrossRef
Metadata
Title
Effect of Water and Fluoride Content of Anodizing Electrolyte on Morphology and Corrosion Behavior of ZrO2-Nanotubes Developed on Zirconium Implant
Authors
M. G. Hosseini
V. Daneshvari-Esfahlan
H. Maleki-Ghaleh
Publication date
25-01-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1904-z

Other articles of this Issue 3/2016

Journal of Materials Engineering and Performance 3/2016 Go to the issue

Premium Partners