Skip to main content
Top
Published in: Microsystem Technologies 9/2018

20-03-2018 | Technical Paper

Effects of changing PZT length on the performance of doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation

Authors: Xiaoya Zhou, Shiqiao Gao, Lei Jin, Haipeng Liu, Ping Li

Published in: Microsystem Technologies | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. Most work focusing on changing the configuration of piezoelectric energy harvester has concentrated on cantilevered beams at resonance using harmonic excitation. This work is mainly devoted to obtain the effects of changing PZT length on output characteristics for doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation. Firstly, analytical expressions of output characteristics of random excited doubly-clamped piezoelectric energy harvester are derived. Subsequently, the trends between factors that affect output characteristics and the change of beam shape or PZT length are calculated and analyzed. Finally, effects of changing PZT length on output characteristics varying with load resistance and acceleration’s spectral density for doubly-clamped piezoelectric energy harvester with different beam shapes are compared and discussed. Monte Carlo simulation and experimental results exhibit qualitative agreement with Fokker–Planck theory, showing that changing PZT length could improve output characteristics of random excited doubly-clamped piezoelectric energy harvester considerably. Besides, it also demonstrates that doubly-clamped trapezoidal piezoelectric energy harvesters under random excitation are superior to their rectangular counterparts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005CrossRef Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005CrossRef
go back to reference Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
go back to reference Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914CrossRef Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914CrossRef
go back to reference Bryant RG, Effinger Iv RT, Aranda I Jr et al (2004) Radial field piezoelectric diaphragms. J Intell Mater Syst Struct 15(7):527–538CrossRef Bryant RG, Effinger Iv RT, Aranda I Jr et al (2004) Radial field piezoelectric diaphragms. J Intell Mater Syst Struct 15(7):527–538CrossRef
go back to reference Cammarano A, Burrow SG, Barton DAW et al (2010) Tuning a resonant energy harvester using a generalized electrical load. Smart Mater Struct 19(5):055003CrossRef Cammarano A, Burrow SG, Barton DAW et al (2010) Tuning a resonant energy harvester using a generalized electrical load. Smart Mater Struct 19(5):055003CrossRef
go back to reference Chandrasekharan N, Ju J, Thompson L (2013) Effects of geometric and material properties on electrical power harvested from a bimorph piezoelectric cantilever beam. Multidiscip Model Mater Struct 9(3):391–409CrossRef Chandrasekharan N, Ju J, Thompson L (2013) Effects of geometric and material properties on electrical power harvested from a bimorph piezoelectric cantilever beam. Multidiscip Model Mater Struct 9(3):391–409CrossRef
go back to reference Dietl JM, Garcia E (2010) Beam shape optimization for power harvesting. J Intell Mater Syst Struct 21(6):633–646CrossRef Dietl JM, Garcia E (2010) Beam shape optimization for power harvesting. J Intell Mater Syst Struct 21(6):633–646CrossRef
go back to reference Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18(10):104013CrossRef Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18(10):104013CrossRef
go back to reference Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12):125008CrossRef Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12):125008CrossRef
go back to reference Jackson N, O’Keeffe R, Waldron F et al (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23(7):075014CrossRef Jackson N, O’Keeffe R, Waldron F et al (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23(7):075014CrossRef
go back to reference Jin L, Gao S, Zhou X et al (2017) The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst Technol 23(10):4805–4814CrossRef Jin L, Gao S, Zhou X et al (2017) The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst Technol 23(10):4805–4814CrossRef
go back to reference Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J 8(3):261–268CrossRef Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J 8(3):261–268CrossRef
go back to reference Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phy Rev 1(4):041301CrossRef Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phy Rev 1(4):041301CrossRef
go back to reference Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef
go back to reference Liang Z, Xu C, Ren B et al (2014) A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped–clamped beams. Jpn J Appl Phys 53(8):087101CrossRef Liang Z, Xu C, Ren B et al (2014) A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped–clamped beams. Jpn J Appl Phys 53(8):087101CrossRef
go back to reference Lien IC, Shu YC (2012) Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater Struct 21(8):082001CrossRef Lien IC, Shu YC (2012) Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater Struct 21(8):082001CrossRef
go back to reference Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23(7):075024CrossRef Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23(7):075024CrossRef
go back to reference Manla G, White NM, Tudor J (2009) Harvesting energy from vehicle wheels//Solid-State Sensors, Actuators and Microsystems Conference. Trans. Int. IEEE. 2009:1389–1392 Manla G, White NM, Tudor J (2009) Harvesting energy from vehicle wheels//Solid-State Sensors, Actuators and Microsystems Conference. Trans. Int. IEEE. 2009:1389–1392
go back to reference Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(9):658–664CrossRef Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(9):658–664CrossRef
go back to reference Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef
go back to reference Ottman GK, Hofmann HF, Bhatt AC et al (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5):669–676CrossRef Ottman GK, Hofmann HF, Bhatt AC et al (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5):669–676CrossRef
go back to reference Park KI, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24(22):2999–3004CrossRef Park KI, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24(22):2999–3004CrossRef
go back to reference Patel R (2013) Modelling analysis and optimisation of cantilever piezoelectric energy harvesters. University of Nottingham, Nottingham Patel R (2013) Modelling analysis and optimisation of cantilever piezoelectric energy harvesters. University of Nottingham, Nottingham
go back to reference Patel R, McWilliam S, Popov AA (2014) Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater Struct 23(8):085002CrossRef Patel R, McWilliam S, Popov AA (2014) Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater Struct 23(8):085002CrossRef
go back to reference Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13(5):1131CrossRef Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13(5):1131CrossRef
go back to reference Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol). 220(22):1–10 Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol). 220(22):1–10
go back to reference Shafer MW, Bryant M, Garcia E (2012) Designing maximum power output into piezoelectric energy harvesters. Smart Mater Struct 21(8):085008CrossRef Shafer MW, Bryant M, Garcia E (2012) Designing maximum power output into piezoelectric energy harvesters. Smart Mater Struct 21(8):085008CrossRef
go back to reference Sunithamani S, Lakshmi P (2015) Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio. Microsyst Technol 21(4):733–738CrossRef Sunithamani S, Lakshmi P (2015) Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio. Microsyst Technol 21(4):733–738CrossRef
go back to reference Sunithamani S, Lakshmi P, Flora EE (2014) PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study. Microsyst Technol 20(12):2165–2171CrossRef Sunithamani S, Lakshmi P, Flora EE (2014) PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study. Microsyst Technol 20(12):2165–2171CrossRef
go back to reference Tabatabaei SMK, Behbahani S, Rajaeipour P (2016) Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system. Microsyst Technol 22(10):2435–2446CrossRef Tabatabaei SMK, Behbahani S, Rajaeipour P (2016) Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system. Microsyst Technol 22(10):2435–2446CrossRef
go back to reference Yang B, Lee C, Xiang W et al (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRef Yang B, Lee C, Xiang W et al (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRef
go back to reference Zhou X, Gao S, Liu H et al (2016) Effects of introducing nonlinear components for a random excited hybrid energy harvester. Smart Mater Struct 26(1):015008CrossRef Zhou X, Gao S, Liu H et al (2016) Effects of introducing nonlinear components for a random excited hybrid energy harvester. Smart Mater Struct 26(1):015008CrossRef
Metadata
Title
Effects of changing PZT length on the performance of doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation
Authors
Xiaoya Zhou
Shiqiao Gao
Lei Jin
Haipeng Liu
Ping Li
Publication date
20-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3845-y

Other articles of this Issue 9/2018

Microsystem Technologies 9/2018 Go to the issue