Skip to main content
Erschienen in: Microsystem Technologies 2/2015

01.02.2015 | Technical Paper

Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations

verfasst von: Ping Li, Shiqiao Gao, Huatong Cai

Erschienen in: Microsystem Technologies | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We illustrate electroelastic modeling, analysis and simulation solutions, and experimental validation of hybrid piezoelectric (PE) and electromagnetic (EM) energy harvesting from broadband random vibration. For a more practically available ambient source, the more compact expressions of mean power and spectral density (SD) involving dimensionless parameters are derived when the harvester is subjected to random excitation. In the study, it is assumed that the base excitation is white noise. Then, the effect of acceleration SD, load resistance, coupling strength on harvester performances are analyzed by numerical calculation and simulation, and the results are validated by the experimental measurements. It is founded that, only if the load resistance of PE and EM element meet the impedance matching can the hybrid energy harvester output the maximal mean power and spectral density at the resonant frequency, which increases with PE load resistance increasing, but hardly affected by load resistance of EM element; the variation extent of mean power with SD of acceleration increasing varies with the load resistance, and it is up to the maximum under the condition of optimal load; moreover, the stronger the coupling strength is, the wider the frequency band becomes, and the greater the mean power and power spectral density are, while the increasing extent decreases with the coupling strength increasing. Besides, the coupling strength can affect the internal resistance of harvester. Furthermore, with coupling strength increasing, the decreasing degree of mean power falls when the load resistance is greater than the optimal load.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005CrossRef Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005CrossRef
Zurück zum Zitat Blystad LCJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 57(4):908–919CrossRef Blystad LCJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 57(4):908–919CrossRef
Zurück zum Zitat Challa VR, Prasad MG, Fisher FT (2009) A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater Struct 18:1–11CrossRef Challa VR, Prasad MG, Fisher FT (2009) A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater Struct 18:1–11CrossRef
Zurück zum Zitat Cheng S, Wang N, Arnold DP (2007) Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J Micromech Microeng 17:2328–2335CrossRef Cheng S, Wang N, Arnold DP (2007) Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J Micromech Microeng 17:2328–2335CrossRef
Zurück zum Zitat Cho J, Anderson M, Richards R (2005) Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling. J Micromech Microeng 15:1797–1803CrossRef Cho J, Anderson M, Richards R (2005) Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling. J Micromech Microeng 15:1797–1803CrossRef
Zurück zum Zitat Cottone F, Gammaitoni L, Vocca H et al (2012) Piezoelectric buckled beams for random vibration energy harvesting[J]. Smart Mater Struct 21(3):035021CrossRef Cottone F, Gammaitoni L, Vocca H et al (2012) Piezoelectric buckled beams for random vibration energy harvesting[J]. Smart Mater Struct 21(3):035021CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:1–15CrossRef Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:1–15CrossRef
Zurück zum Zitat Gradshtenyn IS, Ryzhik IM (1994) Table of Integrals Series, and Products. Academic, New York Gradshtenyn IS, Ryzhik IM (1994) Table of Integrals Series, and Products. Academic, New York
Zurück zum Zitat Guyomar D, Lallart M (2011) Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2:274–294CrossRef Guyomar D, Lallart M (2011) Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2:274–294CrossRef
Zurück zum Zitat Halvorsen E (2007) Broadband excitation of resonant energy harvesters. PowerMEMS, pp 319–322 Halvorsen E (2007) Broadband excitation of resonant energy harvesters. PowerMEMS, pp 319–322
Zurück zum Zitat Halvorsen E (2008) Energy harvesters driven by broadband random vibrations. J Microelectromech Syst 17(5):1061–1071CrossRef Halvorsen E (2008) Energy harvesters driven by broadband random vibrations. J Microelectromech Syst 17(5):1061–1071CrossRef
Zurück zum Zitat Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:1–12 Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:1–12
Zurück zum Zitat Hatipoglu G, Urey H (2010) FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct 19:1–11CrossRef Hatipoglu G, Urey H (2010) FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct 19:1–11CrossRef
Zurück zum Zitat Jackson WC, Brian KH, Emiliano SR (2013) Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration. Adv Acoust Vib. doi:10.1155/2013/241025 Jackson WC, Brian KH, Emiliano SR (2013) Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration. Adv Acoust Vib. doi:10.​1155/​2013/​241025
Zurück zum Zitat James D, Paul DM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 11:4514–4530 James D, Paul DM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 11:4514–4530
Zurück zum Zitat Karami MA, Inman DJ (2011) Electromechanical modeling of the low-frequency Zigzag micro-energy harvester. J Intell Mater Syst Struct 22:271–282CrossRef Karami MA, Inman DJ (2011) Electromechanical modeling of the low-frequency Zigzag micro-energy harvester. J Intell Mater Syst Struct 22:271–282CrossRef
Zurück zum Zitat Karami MA, Inman DJ (2012) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett 100:042901–042904CrossRef Karami MA, Inman DJ (2012) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett 100:042901–042904CrossRef
Zurück zum Zitat Lallart M, Inman DJ (2010) Mechanical effect of combined piezoelectric and electromagnetic energy harvesting. Proc IMAC XXVIII:2.1–4 Lallart M, Inman DJ (2010) Mechanical effect of combined piezoelectric and electromagnetic energy harvesting. Proc IMAC XXVIII:2.1–4
Zurück zum Zitat Lefeuvre E, Badel A, Richard C et al (2007) Energy harvesting using piezoelectric materials: case of random vibrations. J Electroceram 19(4):349–355CrossRef Lefeuvre E, Badel A, Richard C et al (2007) Energy harvesting using piezoelectric materials: case of random vibrations. J Electroceram 19(4):349–355CrossRef
Zurück zum Zitat Ling CS, Dan H, Steve GB (2013) Technological challenges of developing wireless health and usage monitoring systems. In: Proc SPIE 8695, 86950 K-1 Ling CS, Dan H, Steve GB (2013) Technological challenges of developing wireless health and usage monitoring systems. In: Proc SPIE 8695, 86950 K-1
Zurück zum Zitat Liu CH (2008) Stochastic Process, 4th edn. Huazhong University of Science and Technology Press, China Liu CH (2008) Stochastic Process, 4th edn. Huazhong University of Science and Technology Press, China
Zurück zum Zitat Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef
Zurück zum Zitat Liua H, Quana C, Taya CJ (2011) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Proc 19:129–133CrossRef Liua H, Quana C, Taya CJ (2011) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Proc 19:129–133CrossRef
Zurück zum Zitat Mitcheson PD, Green TC, Yeatman EM (2007) Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst Technol 13:1629–1635CrossRef Mitcheson PD, Green TC, Yeatman EM (2007) Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst Technol 13:1629–1635CrossRef
Zurück zum Zitat Nicholas R, Natarajan B (2013) A structured approach to optimization of energy harvesting wireless sensor networks. In: The 10th annual IEEE CCNC, pp 420–425 Nicholas R, Natarajan B (2013) A structured approach to optimization of energy harvesting wireless sensor networks. In: The 10th annual IEEE CCNC, pp 420–425
Zurück zum Zitat Robert D, Wu WJ, Chen YY (2008) A hybrid piezoelectric and electromagnetic energy harvesting device. In: 19th international conference on AST 10, pp 6–9 Robert D, Wu WJ, Chen YY (2008) A hybrid piezoelectric and electromagnetic energy harvesting device. In: 19th international conference on AST 10, pp 6–9
Zurück zum Zitat Serre C, Rodríguez AP, Fondevilla N (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13:1655–1661CrossRef Serre C, Rodríguez AP, Fondevilla N (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13:1655–1661CrossRef
Zurück zum Zitat Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512CrossRef Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512CrossRef
Zurück zum Zitat Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, GermanyCrossRef Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, GermanyCrossRef
Zurück zum Zitat Tanesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20:625–633 Tanesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20:625–633
Zurück zum Zitat Tang L, Yang Y (2011) Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater Struct 20:1–13MATH Tang L, Yang Y (2011) Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater Struct 20:1–13MATH
Zurück zum Zitat Tang X, Zuo L (2012) Vibration energy harvesting from random force and motion excitations. Smart Mater Struct 21(7):075025CrossRef Tang X, Zuo L (2012) Vibration energy harvesting from random force and motion excitations. Smart Mater Struct 21(7):075025CrossRef
Zurück zum Zitat Torsten R, Armaghan S (2010) Analysis and modelling towards hybrid piezo-electromagnetic vibrating energy harvesting devices. In: AIP conference proceedings, vol 81, pp 81–85 Torsten R, Armaghan S (2010) Analysis and modelling towards hybrid piezo-electromagnetic vibrating energy harvesting devices. In: AIP conference proceedings, vol 81, pp 81–85
Zurück zum Zitat Wacharasindhu T, Wkwon J (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:1–8 Wacharasindhu T, Wkwon J (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:1–8
Zurück zum Zitat Wang P, Li W, Che L (2012) Design and fabrication of a micro electromagnetic vibration energy harvester. J Semicond 10:1–4MATH Wang P, Li W, Che L (2012) Design and fabrication of a micro electromagnetic vibration energy harvester. J Semicond 10:1–4MATH
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for Microsystems. Sens Actuators, A 52:8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for Microsystems. Sens Actuators, A 52:8–11CrossRef
Zurück zum Zitat Wu X, Khaligh A, Xu Y (2008) Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers. In: IEEE 2008 custom integrated circuits conference, pp 177–181 Wu X, Khaligh A, Xu Y (2008) Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers. In: IEEE 2008 custom integrated circuits conference, pp 177–181
Zurück zum Zitat Wu WJ, WickenheiserA M, Reissman T (2009) Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Mater Struct 18:1–14 Wu WJ, WickenheiserA M, Reissman T (2009) Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Mater Struct 18:1–14
Zurück zum Zitat Yang B, Lee C, Kee WL (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro Nanolith MEMS MOEMS 9:1–10 Yang B, Lee C, Kee WL (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro Nanolith MEMS MOEMS 9:1–10
Zurück zum Zitat Yogesh KR, Anantha PC (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid State Circuits 1:189–206 Yogesh KR, Anantha PC (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid State Circuits 1:189–206
Zurück zum Zitat Zhao S, Erturk A (2013) Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater Struct 22(1):015002CrossRef Zhao S, Erturk A (2013) Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater Struct 22(1):015002CrossRef
Metadaten
Titel
Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations
verfasst von
Ping Li
Shiqiao Gao
Huatong Cai
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-2030-6

Weitere Artikel der Ausgabe 2/2015

Microsystem Technologies 2/2015 Zur Ausgabe

Neuer Inhalt