Skip to main content
Erschienen in: Microsystem Technologies 2/2015

01.02.2015 | Technical Paper

Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment

verfasst von: Zhiyu Wen, Licheng Deng, Xingqiang Zhao, Zhengguo Shang, Chengwei Yuan, Yin She

Erschienen in: Microsystem Technologies | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Piezoelectric vibration energy harvesters as an autonomous power source for various types of sensors, actuators and MEMS devices have attracted increasing attention in recent years. Traditional MEMS-based PZT single beam vibration energy harvester has low voltage output (usually <1 V) which causes rectifier circuit to consume most of power or turn off in practical applications. In this paper, in order to improve the voltage output of MEMS-based PZT vibration energy harvester as well as ensure high power output, a PZT beam array configuration for MEMS-based vibration energy harvester is proposed. Based on Hamilton’s principle and Euler–Bernoulli beam theory, mathematical model for the proposed vibration energy harvester is established. Two different dimensions MEMS-based PZT beam array vibration energy harvesters are designed and fabricated through micro-fabrication techniques. The performances of the two types of fabricated vibration energy harvesters are characterized and compared with traditional vibration energy harvester in experiment. Experimental results agree well with theoretical analysis, and the experimental results show that the better performance fabricated vibration energy harvester can generate 121.4 μW and 3.5 V respectively at 1 g acceleration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003c2006). Smart Mater Struct 16(3):R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003c2006). Smart Mater Struct 16(3):R1CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
Zurück zum Zitat Bertacchini A, Scorcioni S, Dondi D, Larcher L, Pavan P, Todaro MT, Campa A, Caretto G, Petroni S, Passaseo A (2011) Aln-based MEMS devices for vibrational energy harvesting applications. In: Solid-state device research conference (ESSDERC), 2011 Proceedings of the European, IEEE, pp 119–122 Bertacchini A, Scorcioni S, Dondi D, Larcher L, Pavan P, Todaro MT, Campa A, Caretto G, Petroni S, Passaseo A (2011) Aln-based MEMS devices for vibrational energy harvesting applications. In: Solid-state device research conference (ESSDERC), 2011 Proceedings of the European, IEEE, pp 119–122
Zurück zum Zitat Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a cmos compatible process. Sens Actuators A: Phys 188:489–494 Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a cmos compatible process. Sens Actuators A: Phys 188:489–494
Zurück zum Zitat Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19(9):094005CrossRef Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19(9):094005CrossRef
Zurück zum Zitat Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers R, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp 29.5.1–29.5.4 Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers R, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp 29.5.1–29.5.4
Zurück zum Zitat Elfrink R, Renaud M, Kamel TM, De Nooijer C, Jambunathan M, Goedbloed M, Hohlfeld D, Matova S, Pop V, Caballero L (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20(10):104,001CrossRef Elfrink R, Renaud M, Kamel TM, De Nooijer C, Jambunathan M, Goedbloed M, Hohlfeld D, Matova S, Pop V, Caballero L (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20(10):104,001CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, NY Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, NY
Zurück zum Zitat Giordano C, Ingrosso I, Todaro MT, Maruccio G, De Guido S, Cingolani R, Passaseo A, De Vittorio M (2009) Aln on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectron Eng 86(4):1204–1207CrossRef Giordano C, Ingrosso I, Todaro MT, Maruccio G, De Guido S, Cingolani R, Passaseo A, De Vittorio M (2009) Aln on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectron Eng 86(4):1204–1207CrossRef
Zurück zum Zitat Hande A, Polk T, Walker W, Bhatia D (2007) Indoor solar energy harvesting for sensor network router nodes. Microprocess Microsyst 31(6):420–432CrossRef Hande A, Polk T, Walker W, Bhatia D (2007) Indoor solar energy harvesting for sensor network router nodes. Microprocess Microsyst 31(6):420–432CrossRef
Zurück zum Zitat Jambunathan M, Elfrink R, Vullers R, van Schaijk R, Dekkers M, Broekmaat J (2012) Pulsed laser deposited-PZT based MEMS energy harvesting devices. In: Applications of ferroelectrics held jointly with 2012 European conference on the applications of polar dielectrics and 2012 International symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, applications of ferroelectrics held jointly with 2012 European Conference on the applications of polar dielectrics and 2012 International Symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, pp 1–4 Jambunathan M, Elfrink R, Vullers R, van Schaijk R, Dekkers M, Broekmaat J (2012) Pulsed laser deposited-PZT based MEMS energy harvesting devices. In: Applications of ferroelectrics held jointly with 2012 European conference on the applications of polar dielectrics and 2012 International symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, applications of ferroelectrics held jointly with 2012 European Conference on the applications of polar dielectrics and 2012 International Symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, pp 1–4
Zurück zum Zitat Kim SB, Park H, Kim SH, Wikle HC, Park JH, Kim DJ (2013) Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting. J Microelectromech Syst 22(1):1–8CrossRef Kim SB, Park H, Kim SH, Wikle HC, Park JH, Kim DJ (2013) Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting. J Microelectromech Syst 22(1):1–8CrossRef
Zurück zum Zitat Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2007) Degradation in the ferroelectric and piezoelectric properties of pb(zr,ti)o3 thin films derived from a MEMS microfabrication process. J Micromech Microeng 17(7):1238CrossRef Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2007) Degradation in the ferroelectric and piezoelectric properties of pb(zr,ti)o3 thin films derived from a MEMS microfabrication process. J Micromech Microeng 17(7):1238CrossRef
Zurück zum Zitat Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2008) Fabrication of piezoelectric microcantilevers using lanio3 buffered pb (zr,ti)o3 thin film. J Micromech Microeng 18(3):035007CrossRef Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2008) Fabrication of piezoelectric microcantilevers using lanio3 buffered pb (zr,ti)o3 thin film. J Micromech Microeng 18(3):035007CrossRef
Zurück zum Zitat Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035,005CrossRef Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035,005CrossRef
Zurück zum Zitat Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(09):658–664CrossRef Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(09):658–664CrossRef
Zurück zum Zitat Park JC, Khym S, Park JY (2013) Micro-fabricated lead zirconate titanate bent cantilever energy harvester with multi-dimensional operation. Appl Phys Lett 102(4):043901CrossRef Park JC, Khym S, Park JY (2013) Micro-fabricated lead zirconate titanate bent cantilever energy harvester with multi-dimensional operation. Appl Phys Lett 102(4):043901CrossRef
Zurück zum Zitat Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Kluwer Academic Publishers, Springer, Dordrecht, Netherlands Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Kluwer Academic Publishers, Springer, Dordrecht, Netherlands
Zurück zum Zitat Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef
Zurück zum Zitat Shen D, Park JH, Ajitsaria J, Choe SY, Wikle III, HC, Kim DJ (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated si proof mass for vibration energy harvesting. J Micromech Microeng 18(5):055017CrossRef Shen D, Park JH, Ajitsaria J, Choe SY, Wikle III, HC, Kim DJ (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated si proof mass for vibration energy harvesting. J Micromech Microeng 18(5):055017CrossRef
Zurück zum Zitat Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle III, HC, Kim DJ (2009) Micromachined PZT cantilever based on soi structure for low frequency vibration energy harvesting. Sens Actuators A: Phys 154(1):103–108CrossRef Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle III, HC, Kim DJ (2009) Micromachined PZT cantilever based on soi structure for low frequency vibration energy harvesting. Sens Actuators A: Phys 154(1):103–108CrossRef
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16(10):799–807CrossRef Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16(10):799–807CrossRef
Zurück zum Zitat Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEE J Trans Electr Electron Eng 6(2):101–111CrossRef Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEE J Trans Electr Electron Eng 6(2):101–111CrossRef
Zurück zum Zitat Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1):7–17CrossRef Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1):7–17CrossRef
Zurück zum Zitat Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91(9):093508 Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91(9):093508
Zurück zum Zitat Wu WJ, Lee BS (2012) Piezoelectric MEMS power generators for vibration energy harvesting. In: Lallart M (ed) Small-scale energy harvesting. InTech, pp 156–157 Wu WJ, Lee BS (2012) Piezoelectric MEMS power generators for vibration energy harvesting. In: Lallart M (ed) Small-scale energy harvesting. InTech, pp 156–157
Zurück zum Zitat Wu Y, Badel A, Formosa F, Liu W, Agbossou AE (2012) Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J Intell Mater Syst Struct 24(12):1445–1458 Wu Y, Badel A, Formosa F, Liu W, Agbossou AE (2012) Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J Intell Mater Syst Struct 24(12):1445–1458
Zurück zum Zitat Zhang J, Cao Z, Kuwano H (2011) Fabrication of low-residual-stress aln thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50(9):09ND18CrossRef Zhang J, Cao Z, Kuwano H (2011) Fabrication of low-residual-stress aln thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50(9):09ND18CrossRef
Zurück zum Zitat Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. Sens J IEEE 11(2):481–488CrossRef Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. Sens J IEEE 11(2):481–488CrossRef
Metadaten
Titel
Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment
verfasst von
Zhiyu Wen
Licheng Deng
Xingqiang Zhao
Zhengguo Shang
Chengwei Yuan
Yin She
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-2052-0

Weitere Artikel der Ausgabe 2/2015

Microsystem Technologies 2/2015 Zur Ausgabe

Neuer Inhalt