Skip to main content
Erschienen in: Microsystem Technologies 2/2015

01.02.2015 | Review Paper

Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor

verfasst von: Noraini Marsi, Burhanuddin Yeop Majlis, Azrul Azlan Hamzah, Faisal Mohd-Yasin

Erschienen in: Microsystem Technologies | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This works reports a packaged MEMS capacitive pressure sensor (CPS) employing single crystal 3C-SiC thin film as a diaphragm. The details of the design and fabrication steps involved bulk micromachining process. The 3C-SiC-on-Si wafer is back-etched the bulk Si to leave 3C-SC thin film by applied ProTEK PSB coating as a newly photosensitive layer. The ProTEK PSB is exposed into desired pattern of MEMS capacitive pressure sensor and the exposed pattern is developed by developer (ethylene lactate). The photosensitive can be stripped off with strong combination acid such as 2-(1-methoxy)propyl acetate, ethyl acetoacetate and photoacid generator which is attack the exposed ProTEK PSB while unexposed ProTEK PSB areas remain contact the alignment on the wafer surfaces. The prototypes of a MEMS capacitive pressure is packaged for high temperature up to 500 °C and characterized under static pressure of 5.0 MPa in a stainless steel chamber with direct capacitance measurement using LCR meter. The diaphragm of 3C-SiC thin film has the thicknesses of 1.0 µm and the size of 2.0 × 2.0 mm. At room temperature (27 °C), the sensitivity of the sensor is 0.00962 pF/MPa in the range of (1.0–5.0 MPa), with nonlinearity of 0.49 %. At 300 °C, the sensitivity is 0.0127 pF/MPa, and nonlinearity of 0.46 %. The sensitivity increased by 0.0031 pF/MPa, corresponding temperature coefficient of sensitivity is 0.058 %/ °C. At 500 °C, the maximum temperature coefficient of output change is 0.073 %/ °C being red at 5.0 MPa. The main impact of this work is the ability of the sensor to operate up to 500 °C, compare to the previous work using similar 3C-SiC diaphragm that can operates only 400 °C. The main impact of this work is the ability our CPS to operate up to 500 °C and pressure of 5 MPa to surpass the performance of previous work at lower temperature and pressure. In addition, this CPS has reliable stainless steel (SS) o-ring packaging with a direct assembly approach to reduce manufacturing cost and easy installation and maintenance environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang S, Allen MG (2004) Capacitive pressure sensors with stainless steel diaphrgam and substrate. J Micromech Microeng 14:612–618CrossRef Chang S, Allen MG (2004) Capacitive pressure sensors with stainless steel diaphrgam and substrate. J Micromech Microeng 14:612–618CrossRef
Zurück zum Zitat Chen L, Mehregany M (2008) A silicon capacitive pressure sensor for in-sylinder pressure measurement. Sens Actuator A 145–146:2–8CrossRef Chen L, Mehregany M (2008) A silicon capacitive pressure sensor for in-sylinder pressure measurement. Sens Actuator A 145–146:2–8CrossRef
Zurück zum Zitat Chen Z, Du W, Zhao F (2013) Silicon carbide MEMS capacitive pressure sensor for harsh environment. ASTM 2013 Proceedings: Micro and nano-systems engineering and packaging, pp 1–5 Chen Z, Du W, Zhao F (2013) Silicon carbide MEMS capacitive pressure sensor for harsh environment. ASTM 2013 Proceedings: Micro and nano-systems engineering and packaging, pp 1–5
Zurück zum Zitat Chuan CW, Bishnu PG, David JM, Carlos HM (2000) Contamination-intensive differential capacitive pressure sensor. J Micromechanical Syst 9(4):538–543CrossRef Chuan CW, Bishnu PG, David JM, Carlos HM (2000) Contamination-intensive differential capacitive pressure sensor. J Micromechanical Syst 9(4):538–543CrossRef
Zurück zum Zitat Gupta S, Pecholt B, Molian P (2010) Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers. J Mater Sci 46:196–206CrossRef Gupta S, Pecholt B, Molian P (2010) Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers. J Mater Sci 46:196–206CrossRef
Zurück zum Zitat Hamzah AA, Majlis BY, Ahmad I (2004) Deflection analysis of epotaxially deposited polysilicon encapsulation for MEMS devices. Proc IEEE International Conferences on Semiconductor Electronics, pp 611–614 Hamzah AA, Majlis BY, Ahmad I (2004) Deflection analysis of epotaxially deposited polysilicon encapsulation for MEMS devices. Proc IEEE International Conferences on Semiconductor Electronics, pp 611–614
Zurück zum Zitat Jiang L, Cheung R (2009) A review of silicon carbide development in MEMS applications. Int J Comput Mater Sci Surf Eng 2:225–240 Jiang L, Cheung R (2009) A review of silicon carbide development in MEMS applications. Int J Comput Mater Sci Surf Eng 2:225–240
Zurück zum Zitat Kim JH, Park KT, Kim HC, Chun K (2009) Fabrication of pressure sensor for enhancing sensitivity using silicon nanowire. International Solid-State Sensors, Actuators and Microsystem Conference, pp 1936–1939 Kim JH, Park KT, Kim HC, Chun K (2009) Fabrication of pressure sensor for enhancing sensitivity using silicon nanowire. International Solid-State Sensors, Actuators and Microsystem Conference, pp 1936–1939
Zurück zum Zitat Marsi N, Majlis BY, Mohd-Yasin F, Hamzah AA (2014) The fabrication of back etching 3C-SiC-on-Si diaphragm employing KOH + IPA in MEMS capacitive pressure sensor. Microsyst Technol 20(8):1–11 Marsi N, Majlis BY, Mohd-Yasin F, Hamzah AA (2014) The fabrication of back etching 3C-SiC-on-Si diaphragm employing KOH + IPA in MEMS capacitive pressure sensor. Microsyst Technol 20(8):1–11
Zurück zum Zitat Mehregany M (2008) Silicon carbide micro/nani system for demanding and harsh environment applications. Am Phys Soc 53(2) Mehregany M (2008) Silicon carbide micro/nani system for demanding and harsh environment applications. Am Phys Soc 53(2)
Zurück zum Zitat Ned AA, Okijie RS, Kurtz AD (1998) 6H-SiC pressure sensor operation at 400 °C. IEEE Fourth International High Temperature Electronics Conference, pp 257–260 Ned AA, Okijie RS, Kurtz AD (1998) 6H-SiC pressure sensor operation at 400 °C. IEEE Fourth International High Temperature Electronics Conference, pp 257–260
Zurück zum Zitat Padron I, Fiory AT, Ravindra NM (2011) Integrated optical and electronic pressure sensor. IEEE Sens J 11:343–350CrossRef Padron I, Fiory AT, Ravindra NM (2011) Integrated optical and electronic pressure sensor. IEEE Sens J 11:343–350CrossRef
Zurück zum Zitat Pengelly RS, Wood SM, Milligan JW, Sheppard ST, Pribble WL (2012) A review of GaN on SiC high electron-mobility power transistors and MMIC’s. IEEE Trans Microw Theory Tech 60(6):1764–1783CrossRef Pengelly RS, Wood SM, Milligan JW, Sheppard ST, Pribble WL (2012) A review of GaN on SiC high electron-mobility power transistors and MMIC’s. IEEE Trans Microw Theory Tech 60(6):1764–1783CrossRef
Zurück zum Zitat Shams QA, Kahng S, Mitchell M, Kuhn T (2002) A silicon carbide pressure sensor for harsh environment. AIP Conf Proc 608:353CrossRef Shams QA, Kahng S, Mitchell M, Kuhn T (2002) A silicon carbide pressure sensor for harsh environment. AIP Conf Proc 608:353CrossRef
Zurück zum Zitat Shields VB (1995) Application of silicon carbide for high temperature electonics and sensors. Jet Propuls Lab 1–9 Shields VB (1995) Application of silicon carbide for high temperature electonics and sensors. Jet Propuls Lab 1–9
Zurück zum Zitat Willander M, Friesel M, Wahad Q, Straumal B (2006) Silicon carbide and diamond for high temperature device applications. J Mater Sci 1–9 Willander M, Friesel M, Wahad Q, Straumal B (2006) Silicon carbide and diamond for high temperature device applications. J Mater Sci 1–9
Zurück zum Zitat Yang J (2013) A harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensor 13(3):2719–2734CrossRef Yang J (2013) A harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensor 13(3):2719–2734CrossRef
Zurück zum Zitat Zhang Y, Howver T, Gagoi N, Yazdi N (2011) A high-sensitive ultra-thin MEMS capacitive pressure sensor. IEEE International Conference Solid-State Sensors. Actuators and Microsystems, pp 538–543 Zhang Y, Howver T, Gagoi N, Yazdi N (2011) A high-sensitive ultra-thin MEMS capacitive pressure sensor. IEEE International Conference Solid-State Sensors. Actuators and Microsystems, pp 538–543
Metadaten
Titel
Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor
verfasst von
Noraini Marsi
Burhanuddin Yeop Majlis
Azrul Azlan Hamzah
Faisal Mohd-Yasin
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2353-y

Weitere Artikel der Ausgabe 2/2015

Microsystem Technologies 2/2015 Zur Ausgabe

Neuer Inhalt