Skip to main content
Top
Published in: Journal of Electronic Materials 4/2022

31-01-2022 | Original Research Article

Effects of Charge Carrier Transport and Band Structure Models on the Performance of Blue-Emitting Polyfluorene-Based Light-Emitting Diodes

Author: Aliasghar Ayobi

Published in: Journal of Electronic Materials | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the effects of an extended Gaussian disorder model (EGDM), extended correlated disorder model (ECDM), constant mobility model, and Gaussian band and simple band structure models on the performance of single-layer polymer light-emitting diodes (PLEDs) based on polyfluorene blue light-emitting polymer. Also, the study examines the effects of N,N′-bis (1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) as the hole transport layer (HTL) and tris (8-hydroxyquinoline) aluminum (Alq3) as electron transport layer (ETL) on the performance of these PLED devices with a Gaussian assumption band structure and EGDM transport models. For this purpose, a simulation method based on the physical drift-diffusion model and Newton computational method is used. It is revealed that in comparison between transport models with a Gaussian assumption band structure, the single-layer PLED devices with EGDM mobility model and constant mobility models have the best and the worst performance, respectively. In comparison between band structure models with an EGDM assumption transport model, the single-layer PLED device with Gaussian band structure has better performance than the single-layer PLED device with simple band structure. In comparison between single-layer, double-layer and three-layer PLED devices with an EGDM assumption transport model and Gaussian band structure model, the performances of three-layer PLED with α-NPD as HTL and Alq3 as ETL and single-layer PLED devices are the best and the worst, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Lu, L. Li, W. Banerjee, P. Sun, N. Gao, and M. Liu, Charge carrier hopping transport based on Marcus theory and variable-range hopping theory in organic semiconductors. J. Appl. Phys. 118, 045701 (2015).CrossRef N. Lu, L. Li, W. Banerjee, P. Sun, N. Gao, and M. Liu, Charge carrier hopping transport based on Marcus theory and variable-range hopping theory in organic semiconductors. J. Appl. Phys. 118, 045701 (2015).CrossRef
2.
go back to reference F. Liu, P.P. Ruden, L.H. Campbell, and D.L. Smith, Exciplex current mechanism for ambipolar bilayer organic light emitting diodes. Appl. Phys. Lett. 99, 123301 (2011).CrossRef F. Liu, P.P. Ruden, L.H. Campbell, and D.L. Smith, Exciplex current mechanism for ambipolar bilayer organic light emitting diodes. Appl. Phys. Lett. 99, 123301 (2011).CrossRef
3.
go back to reference E. Knapp, R. Hausermann, H.U. Schwarzenbach, and B. Ruhstaller, Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010).CrossRef E. Knapp, R. Hausermann, H.U. Schwarzenbach, and B. Ruhstaller, Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010).CrossRef
4.
go back to reference S. Clara, ATLAS User’s Manual: Device Simulation Software (Santa Clara: Silvaco International, 2016). S. Clara, ATLAS User’s Manual: Device Simulation Software (Santa Clara: Silvaco International, 2016).
5.
go back to reference M.M. Mandoc, B. de Boer, and P.W.M. Blom, Electron-only diodes of poly(dialkoxy-p-phenylene) using hole-blocking bottom electrodes. Phys. Rev. B 73, 155205 (2006).CrossRef M.M. Mandoc, B. de Boer, and P.W.M. Blom, Electron-only diodes of poly(dialkoxy-p-phenylene) using hole-blocking bottom electrodes. Phys. Rev. B 73, 155205 (2006).CrossRef
6.
go back to reference H. Natarajan, P.P. Popov, and G.B. Jacobs, A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method. Comput. Methods Appl. Mech. Eng. 384, 114001 (2021).CrossRef H. Natarajan, P.P. Popov, and G.B. Jacobs, A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method. Comput. Methods Appl. Mech. Eng. 384, 114001 (2021).CrossRef
7.
go back to reference R. Coehoorn, and S.L.M. Van Mensfoort, Effects of disorder on the current density and recombination profile in organic light-emitting diodes. Phys. Rev. B 80, 085302 (2009).CrossRef R. Coehoorn, and S.L.M. Van Mensfoort, Effects of disorder on the current density and recombination profile in organic light-emitting diodes. Phys. Rev. B 80, 085302 (2009).CrossRef
8.
go back to reference F. So, B. Krummacher, M.K. Mathai, D. Poplavskyy, S.A. Choulis, and V.E. Choong, Recent progress in solution processable organic light emitting devices. J. Appl. Phys. 102, 091101 (2007).CrossRef F. So, B. Krummacher, M.K. Mathai, D. Poplavskyy, S.A. Choulis, and V.E. Choong, Recent progress in solution processable organic light emitting devices. J. Appl. Phys. 102, 091101 (2007).CrossRef
9.
go back to reference V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).CrossRef V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).CrossRef
10.
go back to reference S.L.M. van Mensfoort, J. Billen, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Electron transport in polyfluorene-based sandwich-type devices: quantitative analysis of the effects of disorder and electron traps. Phys. Rev. B 80, 033202 (2009).CrossRef S.L.M. van Mensfoort, J. Billen, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Electron transport in polyfluorene-based sandwich-type devices: quantitative analysis of the effects of disorder and electron traps. Phys. Rev. B 80, 033202 (2009).CrossRef
11.
go back to reference V. Rodin, F. Symalla, V. Meded, P. Friederich, D. Danilo, A. Poschlad, G. Nelles, F.V. Wrochem, and W. Wenzel, Generalized effective-medium model for the carrier mobility in amorphous organic semiconductors. Phys. Rev. B 91, 155203 (2015).CrossRef V. Rodin, F. Symalla, V. Meded, P. Friederich, D. Danilo, A. Poschlad, G. Nelles, F.V. Wrochem, and W. Wenzel, Generalized effective-medium model for the carrier mobility in amorphous organic semiconductors. Phys. Rev. B 91, 155203 (2015).CrossRef
12.
go back to reference R. Coehoorn, and P.A. Bobbert, Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys. Status Solidi A 209, 12 (2012).CrossRef R. Coehoorn, and P.A. Bobbert, Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys. Status Solidi A 209, 12 (2012).CrossRef
13.
go back to reference A.P. Tyutnev, and V.S. Saenko, Poole–Frenkel mobility field dependence in molecularly doped polymers revisited. Chem. Phys. 483, 172 (2017).CrossRef A.P. Tyutnev, and V.S. Saenko, Poole–Frenkel mobility field dependence in molecularly doped polymers revisited. Chem. Phys. 483, 172 (2017).CrossRef
14.
go back to reference K. Miyashige, M. Morimoto, and S. Naka, Carrier mobilities in amorphous organic semiconductor films prepared at various film formation processes. Phys. Status Solidi A 218, 2100330 (2021).CrossRef K. Miyashige, M. Morimoto, and S. Naka, Carrier mobilities in amorphous organic semiconductor films prepared at various film formation processes. Phys. Status Solidi A 218, 2100330 (2021).CrossRef
15.
go back to reference M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, and R. Coehoorn, Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Organ. Electron. 10, 437 (2009).CrossRef M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, and R. Coehoorn, Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Organ. Electron. 10, 437 (2009).CrossRef
16.
go back to reference S.L.M. van Mensfoort, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008).CrossRef S.L.M. van Mensfoort, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008).CrossRef
17.
go back to reference D.C. Tripathi, K.S. Rao, S. Kumar, and Y.N. Mohapatra, Impact of device structure on field dependence of carrier mobility. Synth. Met. 278, 116835 (2021).CrossRef D.C. Tripathi, K.S. Rao, S. Kumar, and Y.N. Mohapatra, Impact of device structure on field dependence of carrier mobility. Synth. Met. 278, 116835 (2021).CrossRef
18.
go back to reference S.K. Shukri, and L.D. Deja, Charge carriers density, temperature, and electric field dependence of the charge carrier mobility in disordered organic semiconductors in low density region. Condens. Matter. 6, 38 (2021).CrossRef S.K. Shukri, and L.D. Deja, Charge carriers density, temperature, and electric field dependence of the charge carrier mobility in disordered organic semiconductors in low density region. Condens. Matter. 6, 38 (2021).CrossRef
19.
go back to reference C.F. Woellner, Z. Li, J.A. Freire, G. Lu, and T.Q. Nguyen, Charge carrier mobility in a two-phase disordered organic system in the low-carrier concentration regime. Phys. Rev. B 88, 125311 (2013).CrossRef C.F. Woellner, Z. Li, J.A. Freire, G. Lu, and T.Q. Nguyen, Charge carrier mobility in a two-phase disordered organic system in the low-carrier concentration regime. Phys. Rev. B 88, 125311 (2013).CrossRef
20.
go back to reference J.C. Blakesley, H.S. Clubb, and N.C. Greenham, Temperature-dependent electron and hole transport in disordered semiconducting polymers: analysis of energetic disorder. Phys. Rev. B 81, 045210 (2010).CrossRef J.C. Blakesley, H.S. Clubb, and N.C. Greenham, Temperature-dependent electron and hole transport in disordered semiconducting polymers: analysis of energetic disorder. Phys. Rev. B 81, 045210 (2010).CrossRef
21.
go back to reference A. Kokil, K. Yang, and J. Kumar, Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50, 1130 (2012).CrossRef A. Kokil, K. Yang, and J. Kumar, Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50, 1130 (2012).CrossRef
22.
go back to reference M.M. Mandoc, B. de Boer, G. Paasch, and P.W.M. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75, 193202 (2007).CrossRef M.M. Mandoc, B. de Boer, G. Paasch, and P.W.M. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75, 193202 (2007).CrossRef
23.
go back to reference S.L.M. van Mensfoort, and R. Coehoorn, Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008).CrossRef S.L.M. van Mensfoort, and R. Coehoorn, Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008).CrossRef
24.
go back to reference O. Simonetti, and L. Giraudet, Transport models in disordered organic semiconductors and their application to the simulation of thin-film transistors. Polym. Int. 68, 620 (2019).CrossRef O. Simonetti, and L. Giraudet, Transport models in disordered organic semiconductors and their application to the simulation of thin-film transistors. Polym. Int. 68, 620 (2019).CrossRef
25.
go back to reference V. Ruhle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335 (2011).CrossRef V. Ruhle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335 (2011).CrossRef
26.
go back to reference Y. Nagata, and C. Lennartz, Atomistic simulation on charge mobility of amorphous tris (8-hydroxyquinoline) aluminum (Alq3): origin of Poole–Frenkel-type behavior. J. Chem. Phys. 129, 034709 (2008).CrossRef Y. Nagata, and C. Lennartz, Atomistic simulation on charge mobility of amorphous tris (8-hydroxyquinoline) aluminum (Alq3): origin of Poole–Frenkel-type behavior. J. Chem. Phys. 129, 034709 (2008).CrossRef
27.
go back to reference J.J. Brondijk, W.S.C. Roelofs, S.G.J. Mathijssen, A. Shehu, T. Crammer, F. Biscarini, P.W.M. Blom, and D.M. de Leeuw, Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).CrossRef J.J. Brondijk, W.S.C. Roelofs, S.G.J. Mathijssen, A. Shehu, T. Crammer, F. Biscarini, P.W.M. Blom, and D.M. de Leeuw, Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).CrossRef
28.
go back to reference A. Mityashin, Y. Olivier, T. Van Regemorter, C. Rolin, S. Verlaak, N.G. Martinelli, D. Beljonne, J. Cornil, J. Genoe, and P. Heremans, Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535 (2012).CrossRef A. Mityashin, Y. Olivier, T. Van Regemorter, C. Rolin, S. Verlaak, N.G. Martinelli, D. Beljonne, J. Cornil, J. Genoe, and P. Heremans, Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535 (2012).CrossRef
29.
go back to reference R.U.A. Khan, D. Poplavskyy, T. Kreouzis, and D.D.C. Bradley, Hole mobility within arylamine-containing polyfluorene copolymers: a time-of-flight transient-photocurrent study. Phys. Rev. B 75, 035215 (2007).CrossRef R.U.A. Khan, D. Poplavskyy, T. Kreouzis, and D.D.C. Bradley, Hole mobility within arylamine-containing polyfluorene copolymers: a time-of-flight transient-photocurrent study. Phys. Rev. B 75, 035215 (2007).CrossRef
30.
go back to reference W. Kaiser, T. Albes, and A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder. Phys. Chem. Chem. Phys. 20, 8897 (2018).CrossRef W. Kaiser, T. Albes, and A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder. Phys. Chem. Chem. Phys. 20, 8897 (2018).CrossRef
31.
go back to reference Y. Lee, S. Jung, A. Plew, A. Nejim, O. Simonetti, L. Giraudet, S.D. Baranovski, F. Gebhard, K. Meerholz, S. Jung, G. Horowitz, and Y. Bonnassieux, Parametrization of the Gaussian disorder model to account for the high carrier mobility in disordered organic transistors. Phys. Rev. Appl. 15, 024021 (2021).CrossRef Y. Lee, S. Jung, A. Plew, A. Nejim, O. Simonetti, L. Giraudet, S.D. Baranovski, F. Gebhard, K. Meerholz, S. Jung, G. Horowitz, and Y. Bonnassieux, Parametrization of the Gaussian disorder model to account for the high carrier mobility in disordered organic transistors. Phys. Rev. Appl. 15, 024021 (2021).CrossRef
32.
go back to reference A.V. Nenashev, J.O. Oelerich, and S.D. Baranovskii, Theoretical tools for the description of charge transport in disordered organic semiconductors. J. Phys. Condens. Matter 27, 093201 (2015).CrossRef A.V. Nenashev, J.O. Oelerich, and S.D. Baranovskii, Theoretical tools for the description of charge transport in disordered organic semiconductors. J. Phys. Condens. Matter 27, 093201 (2015).CrossRef
33.
go back to reference P. Kordt, J.J.M. Vander Holst, M.A. Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25, 1955 (2015).CrossRef P. Kordt, J.J.M. Vander Holst, M.A. Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25, 1955 (2015).CrossRef
34.
go back to reference Q. Niu, G.J.H. Wetzelaer, P.W.M. Blom, and N.I. Craciun, Modeling of electrical characteristics of degraded polymer light-emitting diodes. Adv. Electr. Mater. 2, 1600103 (2016).CrossRef Q. Niu, G.J.H. Wetzelaer, P.W.M. Blom, and N.I. Craciun, Modeling of electrical characteristics of degraded polymer light-emitting diodes. Adv. Electr. Mater. 2, 1600103 (2016).CrossRef
35.
go back to reference A. Ayobi, and S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer. Opt. Quant. Electr. 51, 295 (2019).CrossRef A. Ayobi, and S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer. Opt. Quant. Electr. 51, 295 (2019).CrossRef
36.
go back to reference S. Chai, S.H. Wen, J.D. Huang, and K.L. Han, Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32, 3218 (2011).CrossRef S. Chai, S.H. Wen, J.D. Huang, and K.L. Han, Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32, 3218 (2011).CrossRef
37.
go back to reference G.A.H. Wetzelaer, L.J.A. Koster, and P.W.M. Blom, Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).CrossRef G.A.H. Wetzelaer, L.J.A. Koster, and P.W.M. Blom, Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).CrossRef
38.
go back to reference Y. Wei, X. Zhou, Y. Peng, Y. Tang, Y. Wang, and S. Xu, Generalized Einstein relation for co-doped organic semiconductors. J. Appl. Phys. 118, 125501 (2015).CrossRef Y. Wei, X. Zhou, Y. Peng, Y. Tang, Y. Wang, and S. Xu, Generalized Einstein relation for co-doped organic semiconductors. J. Appl. Phys. 118, 125501 (2015).CrossRef
39.
go back to reference H. Siemund, F. Bröcker, and H. Göbel, Enhancing the electron injection in polymer light-emitting diodes using a sodium stearate/aluminum bilayer cathode. Organ. Electron. 14, 335 (2013).CrossRef H. Siemund, F. Bröcker, and H. Göbel, Enhancing the electron injection in polymer light-emitting diodes using a sodium stearate/aluminum bilayer cathode. Organ. Electron. 14, 335 (2013).CrossRef
40.
go back to reference H. Siemund, and H. Göbel, Numerical simulation of organic light-emitting diodes with insulating cathode buffer layer. IEEE. Trans. Electr. Devices 63, 9 (2016).CrossRef H. Siemund, and H. Göbel, Numerical simulation of organic light-emitting diodes with insulating cathode buffer layer. IEEE. Trans. Electr. Devices 63, 9 (2016).CrossRef
41.
go back to reference R.J. de Vries, S.L.M. van Mensfoort, V. Shabro, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Analysis of hole transport in a polyfluorene-based copolymer-evidence for the absence of correlated disorder. Appl. Phys. Lett. 94, 163307 (2009).CrossRef R.J. de Vries, S.L.M. van Mensfoort, V. Shabro, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Analysis of hole transport in a polyfluorene-based copolymer-evidence for the absence of correlated disorder. Appl. Phys. Lett. 94, 163307 (2009).CrossRef
42.
go back to reference C.K. Yang, C.M. Yang, H.H. Liao, S.F. Horng, and H.F. Meng, Current injection and transport in polyfluorene. Appl. Phys. Lett. 91, 093504 (2007).CrossRef C.K. Yang, C.M. Yang, H.H. Liao, S.F. Horng, and H.F. Meng, Current injection and transport in polyfluorene. Appl. Phys. Lett. 91, 093504 (2007).CrossRef
43.
go back to reference S.L.M. van Mensfoort, V. Shabro, R.J. de Vries, R.A.J. Janssen, and R. Coehoorn, Hole transport in the organic small molecule material—NPD: evidence for the presence of correlated disorder. J. Appl. Phys. 107, 113710 (2010).CrossRef S.L.M. van Mensfoort, V. Shabro, R.J. de Vries, R.A.J. Janssen, and R. Coehoorn, Hole transport in the organic small molecule material—NPD: evidence for the presence of correlated disorder. J. Appl. Phys. 107, 113710 (2010).CrossRef
44.
go back to reference C.C. Lee, M.Y. Chang, S.W. Liu, P.T. Huang, Y.C. Chen, Y. Chang, Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. J. Appl. Phys. 101, 114501 (2007).CrossRef C.C. Lee, M.Y. Chang, S.W. Liu, P.T. Huang, Y.C. Chen, Y. Chang, Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. J. Appl. Phys. 101, 114501 (2007).CrossRef
45.
go back to reference S. Bange, A. Kuksov, D. Neher, A. Vollmer, N. Koch, A. Ludemann, and S. Heun, The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. J. Appl. Phys. 104, 104506 (2008).CrossRef S. Bange, A. Kuksov, D. Neher, A. Vollmer, N. Koch, A. Ludemann, and S. Heun, The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. J. Appl. Phys. 104, 104506 (2008).CrossRef
Metadata
Title
Effects of Charge Carrier Transport and Band Structure Models on the Performance of Blue-Emitting Polyfluorene-Based Light-Emitting Diodes
Author
Aliasghar Ayobi
Publication date
31-01-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09435-8

Other articles of this Issue 4/2022

Journal of Electronic Materials 4/2022 Go to the issue