Skip to main content
Erschienen in: Journal of Electronic Materials 4/2022

31.01.2022 | Original Research Article

Effects of Charge Carrier Transport and Band Structure Models on the Performance of Blue-Emitting Polyfluorene-Based Light-Emitting Diodes

verfasst von: Aliasghar Ayobi

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the effects of an extended Gaussian disorder model (EGDM), extended correlated disorder model (ECDM), constant mobility model, and Gaussian band and simple band structure models on the performance of single-layer polymer light-emitting diodes (PLEDs) based on polyfluorene blue light-emitting polymer. Also, the study examines the effects of N,N′-bis (1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) as the hole transport layer (HTL) and tris (8-hydroxyquinoline) aluminum (Alq3) as electron transport layer (ETL) on the performance of these PLED devices with a Gaussian assumption band structure and EGDM transport models. For this purpose, a simulation method based on the physical drift-diffusion model and Newton computational method is used. It is revealed that in comparison between transport models with a Gaussian assumption band structure, the single-layer PLED devices with EGDM mobility model and constant mobility models have the best and the worst performance, respectively. In comparison between band structure models with an EGDM assumption transport model, the single-layer PLED device with Gaussian band structure has better performance than the single-layer PLED device with simple band structure. In comparison between single-layer, double-layer and three-layer PLED devices with an EGDM assumption transport model and Gaussian band structure model, the performances of three-layer PLED with α-NPD as HTL and Alq3 as ETL and single-layer PLED devices are the best and the worst, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Lu, L. Li, W. Banerjee, P. Sun, N. Gao, and M. Liu, Charge carrier hopping transport based on Marcus theory and variable-range hopping theory in organic semiconductors. J. Appl. Phys. 118, 045701 (2015).CrossRef N. Lu, L. Li, W. Banerjee, P. Sun, N. Gao, and M. Liu, Charge carrier hopping transport based on Marcus theory and variable-range hopping theory in organic semiconductors. J. Appl. Phys. 118, 045701 (2015).CrossRef
2.
Zurück zum Zitat F. Liu, P.P. Ruden, L.H. Campbell, and D.L. Smith, Exciplex current mechanism for ambipolar bilayer organic light emitting diodes. Appl. Phys. Lett. 99, 123301 (2011).CrossRef F. Liu, P.P. Ruden, L.H. Campbell, and D.L. Smith, Exciplex current mechanism for ambipolar bilayer organic light emitting diodes. Appl. Phys. Lett. 99, 123301 (2011).CrossRef
3.
Zurück zum Zitat E. Knapp, R. Hausermann, H.U. Schwarzenbach, and B. Ruhstaller, Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010).CrossRef E. Knapp, R. Hausermann, H.U. Schwarzenbach, and B. Ruhstaller, Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010).CrossRef
4.
Zurück zum Zitat S. Clara, ATLAS User’s Manual: Device Simulation Software (Santa Clara: Silvaco International, 2016). S. Clara, ATLAS User’s Manual: Device Simulation Software (Santa Clara: Silvaco International, 2016).
5.
Zurück zum Zitat M.M. Mandoc, B. de Boer, and P.W.M. Blom, Electron-only diodes of poly(dialkoxy-p-phenylene) using hole-blocking bottom electrodes. Phys. Rev. B 73, 155205 (2006).CrossRef M.M. Mandoc, B. de Boer, and P.W.M. Blom, Electron-only diodes of poly(dialkoxy-p-phenylene) using hole-blocking bottom electrodes. Phys. Rev. B 73, 155205 (2006).CrossRef
6.
Zurück zum Zitat H. Natarajan, P.P. Popov, and G.B. Jacobs, A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method. Comput. Methods Appl. Mech. Eng. 384, 114001 (2021).CrossRef H. Natarajan, P.P. Popov, and G.B. Jacobs, A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method. Comput. Methods Appl. Mech. Eng. 384, 114001 (2021).CrossRef
7.
Zurück zum Zitat R. Coehoorn, and S.L.M. Van Mensfoort, Effects of disorder on the current density and recombination profile in organic light-emitting diodes. Phys. Rev. B 80, 085302 (2009).CrossRef R. Coehoorn, and S.L.M. Van Mensfoort, Effects of disorder on the current density and recombination profile in organic light-emitting diodes. Phys. Rev. B 80, 085302 (2009).CrossRef
8.
Zurück zum Zitat F. So, B. Krummacher, M.K. Mathai, D. Poplavskyy, S.A. Choulis, and V.E. Choong, Recent progress in solution processable organic light emitting devices. J. Appl. Phys. 102, 091101 (2007).CrossRef F. So, B. Krummacher, M.K. Mathai, D. Poplavskyy, S.A. Choulis, and V.E. Choong, Recent progress in solution processable organic light emitting devices. J. Appl. Phys. 102, 091101 (2007).CrossRef
9.
Zurück zum Zitat V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).CrossRef V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).CrossRef
10.
Zurück zum Zitat S.L.M. van Mensfoort, J. Billen, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Electron transport in polyfluorene-based sandwich-type devices: quantitative analysis of the effects of disorder and electron traps. Phys. Rev. B 80, 033202 (2009).CrossRef S.L.M. van Mensfoort, J. Billen, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Electron transport in polyfluorene-based sandwich-type devices: quantitative analysis of the effects of disorder and electron traps. Phys. Rev. B 80, 033202 (2009).CrossRef
11.
Zurück zum Zitat V. Rodin, F. Symalla, V. Meded, P. Friederich, D. Danilo, A. Poschlad, G. Nelles, F.V. Wrochem, and W. Wenzel, Generalized effective-medium model for the carrier mobility in amorphous organic semiconductors. Phys. Rev. B 91, 155203 (2015).CrossRef V. Rodin, F. Symalla, V. Meded, P. Friederich, D. Danilo, A. Poschlad, G. Nelles, F.V. Wrochem, and W. Wenzel, Generalized effective-medium model for the carrier mobility in amorphous organic semiconductors. Phys. Rev. B 91, 155203 (2015).CrossRef
12.
Zurück zum Zitat R. Coehoorn, and P.A. Bobbert, Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys. Status Solidi A 209, 12 (2012).CrossRef R. Coehoorn, and P.A. Bobbert, Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys. Status Solidi A 209, 12 (2012).CrossRef
13.
Zurück zum Zitat A.P. Tyutnev, and V.S. Saenko, Poole–Frenkel mobility field dependence in molecularly doped polymers revisited. Chem. Phys. 483, 172 (2017).CrossRef A.P. Tyutnev, and V.S. Saenko, Poole–Frenkel mobility field dependence in molecularly doped polymers revisited. Chem. Phys. 483, 172 (2017).CrossRef
14.
Zurück zum Zitat K. Miyashige, M. Morimoto, and S. Naka, Carrier mobilities in amorphous organic semiconductor films prepared at various film formation processes. Phys. Status Solidi A 218, 2100330 (2021).CrossRef K. Miyashige, M. Morimoto, and S. Naka, Carrier mobilities in amorphous organic semiconductor films prepared at various film formation processes. Phys. Status Solidi A 218, 2100330 (2021).CrossRef
15.
Zurück zum Zitat M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, and R. Coehoorn, Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Organ. Electron. 10, 437 (2009).CrossRef M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, and R. Coehoorn, Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Organ. Electron. 10, 437 (2009).CrossRef
16.
Zurück zum Zitat S.L.M. van Mensfoort, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008).CrossRef S.L.M. van Mensfoort, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008).CrossRef
17.
Zurück zum Zitat D.C. Tripathi, K.S. Rao, S. Kumar, and Y.N. Mohapatra, Impact of device structure on field dependence of carrier mobility. Synth. Met. 278, 116835 (2021).CrossRef D.C. Tripathi, K.S. Rao, S. Kumar, and Y.N. Mohapatra, Impact of device structure on field dependence of carrier mobility. Synth. Met. 278, 116835 (2021).CrossRef
18.
Zurück zum Zitat S.K. Shukri, and L.D. Deja, Charge carriers density, temperature, and electric field dependence of the charge carrier mobility in disordered organic semiconductors in low density region. Condens. Matter. 6, 38 (2021).CrossRef S.K. Shukri, and L.D. Deja, Charge carriers density, temperature, and electric field dependence of the charge carrier mobility in disordered organic semiconductors in low density region. Condens. Matter. 6, 38 (2021).CrossRef
19.
Zurück zum Zitat C.F. Woellner, Z. Li, J.A. Freire, G. Lu, and T.Q. Nguyen, Charge carrier mobility in a two-phase disordered organic system in the low-carrier concentration regime. Phys. Rev. B 88, 125311 (2013).CrossRef C.F. Woellner, Z. Li, J.A. Freire, G. Lu, and T.Q. Nguyen, Charge carrier mobility in a two-phase disordered organic system in the low-carrier concentration regime. Phys. Rev. B 88, 125311 (2013).CrossRef
20.
Zurück zum Zitat J.C. Blakesley, H.S. Clubb, and N.C. Greenham, Temperature-dependent electron and hole transport in disordered semiconducting polymers: analysis of energetic disorder. Phys. Rev. B 81, 045210 (2010).CrossRef J.C. Blakesley, H.S. Clubb, and N.C. Greenham, Temperature-dependent electron and hole transport in disordered semiconducting polymers: analysis of energetic disorder. Phys. Rev. B 81, 045210 (2010).CrossRef
21.
Zurück zum Zitat A. Kokil, K. Yang, and J. Kumar, Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50, 1130 (2012).CrossRef A. Kokil, K. Yang, and J. Kumar, Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50, 1130 (2012).CrossRef
22.
Zurück zum Zitat M.M. Mandoc, B. de Boer, G. Paasch, and P.W.M. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75, 193202 (2007).CrossRef M.M. Mandoc, B. de Boer, G. Paasch, and P.W.M. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75, 193202 (2007).CrossRef
23.
Zurück zum Zitat S.L.M. van Mensfoort, and R. Coehoorn, Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008).CrossRef S.L.M. van Mensfoort, and R. Coehoorn, Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008).CrossRef
24.
Zurück zum Zitat O. Simonetti, and L. Giraudet, Transport models in disordered organic semiconductors and their application to the simulation of thin-film transistors. Polym. Int. 68, 620 (2019).CrossRef O. Simonetti, and L. Giraudet, Transport models in disordered organic semiconductors and their application to the simulation of thin-film transistors. Polym. Int. 68, 620 (2019).CrossRef
25.
Zurück zum Zitat V. Ruhle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335 (2011).CrossRef V. Ruhle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335 (2011).CrossRef
26.
Zurück zum Zitat Y. Nagata, and C. Lennartz, Atomistic simulation on charge mobility of amorphous tris (8-hydroxyquinoline) aluminum (Alq3): origin of Poole–Frenkel-type behavior. J. Chem. Phys. 129, 034709 (2008).CrossRef Y. Nagata, and C. Lennartz, Atomistic simulation on charge mobility of amorphous tris (8-hydroxyquinoline) aluminum (Alq3): origin of Poole–Frenkel-type behavior. J. Chem. Phys. 129, 034709 (2008).CrossRef
27.
Zurück zum Zitat J.J. Brondijk, W.S.C. Roelofs, S.G.J. Mathijssen, A. Shehu, T. Crammer, F. Biscarini, P.W.M. Blom, and D.M. de Leeuw, Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).CrossRef J.J. Brondijk, W.S.C. Roelofs, S.G.J. Mathijssen, A. Shehu, T. Crammer, F. Biscarini, P.W.M. Blom, and D.M. de Leeuw, Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).CrossRef
28.
Zurück zum Zitat A. Mityashin, Y. Olivier, T. Van Regemorter, C. Rolin, S. Verlaak, N.G. Martinelli, D. Beljonne, J. Cornil, J. Genoe, and P. Heremans, Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535 (2012).CrossRef A. Mityashin, Y. Olivier, T. Van Regemorter, C. Rolin, S. Verlaak, N.G. Martinelli, D. Beljonne, J. Cornil, J. Genoe, and P. Heremans, Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535 (2012).CrossRef
29.
Zurück zum Zitat R.U.A. Khan, D. Poplavskyy, T. Kreouzis, and D.D.C. Bradley, Hole mobility within arylamine-containing polyfluorene copolymers: a time-of-flight transient-photocurrent study. Phys. Rev. B 75, 035215 (2007).CrossRef R.U.A. Khan, D. Poplavskyy, T. Kreouzis, and D.D.C. Bradley, Hole mobility within arylamine-containing polyfluorene copolymers: a time-of-flight transient-photocurrent study. Phys. Rev. B 75, 035215 (2007).CrossRef
30.
Zurück zum Zitat W. Kaiser, T. Albes, and A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder. Phys. Chem. Chem. Phys. 20, 8897 (2018).CrossRef W. Kaiser, T. Albes, and A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder. Phys. Chem. Chem. Phys. 20, 8897 (2018).CrossRef
31.
Zurück zum Zitat Y. Lee, S. Jung, A. Plew, A. Nejim, O. Simonetti, L. Giraudet, S.D. Baranovski, F. Gebhard, K. Meerholz, S. Jung, G. Horowitz, and Y. Bonnassieux, Parametrization of the Gaussian disorder model to account for the high carrier mobility in disordered organic transistors. Phys. Rev. Appl. 15, 024021 (2021).CrossRef Y. Lee, S. Jung, A. Plew, A. Nejim, O. Simonetti, L. Giraudet, S.D. Baranovski, F. Gebhard, K. Meerholz, S. Jung, G. Horowitz, and Y. Bonnassieux, Parametrization of the Gaussian disorder model to account for the high carrier mobility in disordered organic transistors. Phys. Rev. Appl. 15, 024021 (2021).CrossRef
32.
Zurück zum Zitat A.V. Nenashev, J.O. Oelerich, and S.D. Baranovskii, Theoretical tools for the description of charge transport in disordered organic semiconductors. J. Phys. Condens. Matter 27, 093201 (2015).CrossRef A.V. Nenashev, J.O. Oelerich, and S.D. Baranovskii, Theoretical tools for the description of charge transport in disordered organic semiconductors. J. Phys. Condens. Matter 27, 093201 (2015).CrossRef
33.
Zurück zum Zitat P. Kordt, J.J.M. Vander Holst, M.A. Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25, 1955 (2015).CrossRef P. Kordt, J.J.M. Vander Holst, M.A. Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25, 1955 (2015).CrossRef
34.
Zurück zum Zitat Q. Niu, G.J.H. Wetzelaer, P.W.M. Blom, and N.I. Craciun, Modeling of electrical characteristics of degraded polymer light-emitting diodes. Adv. Electr. Mater. 2, 1600103 (2016).CrossRef Q. Niu, G.J.H. Wetzelaer, P.W.M. Blom, and N.I. Craciun, Modeling of electrical characteristics of degraded polymer light-emitting diodes. Adv. Electr. Mater. 2, 1600103 (2016).CrossRef
35.
Zurück zum Zitat A. Ayobi, and S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer. Opt. Quant. Electr. 51, 295 (2019).CrossRef A. Ayobi, and S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer. Opt. Quant. Electr. 51, 295 (2019).CrossRef
36.
Zurück zum Zitat S. Chai, S.H. Wen, J.D. Huang, and K.L. Han, Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32, 3218 (2011).CrossRef S. Chai, S.H. Wen, J.D. Huang, and K.L. Han, Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32, 3218 (2011).CrossRef
37.
Zurück zum Zitat G.A.H. Wetzelaer, L.J.A. Koster, and P.W.M. Blom, Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).CrossRef G.A.H. Wetzelaer, L.J.A. Koster, and P.W.M. Blom, Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).CrossRef
38.
Zurück zum Zitat Y. Wei, X. Zhou, Y. Peng, Y. Tang, Y. Wang, and S. Xu, Generalized Einstein relation for co-doped organic semiconductors. J. Appl. Phys. 118, 125501 (2015).CrossRef Y. Wei, X. Zhou, Y. Peng, Y. Tang, Y. Wang, and S. Xu, Generalized Einstein relation for co-doped organic semiconductors. J. Appl. Phys. 118, 125501 (2015).CrossRef
39.
Zurück zum Zitat H. Siemund, F. Bröcker, and H. Göbel, Enhancing the electron injection in polymer light-emitting diodes using a sodium stearate/aluminum bilayer cathode. Organ. Electron. 14, 335 (2013).CrossRef H. Siemund, F. Bröcker, and H. Göbel, Enhancing the electron injection in polymer light-emitting diodes using a sodium stearate/aluminum bilayer cathode. Organ. Electron. 14, 335 (2013).CrossRef
40.
Zurück zum Zitat H. Siemund, and H. Göbel, Numerical simulation of organic light-emitting diodes with insulating cathode buffer layer. IEEE. Trans. Electr. Devices 63, 9 (2016).CrossRef H. Siemund, and H. Göbel, Numerical simulation of organic light-emitting diodes with insulating cathode buffer layer. IEEE. Trans. Electr. Devices 63, 9 (2016).CrossRef
41.
Zurück zum Zitat R.J. de Vries, S.L.M. van Mensfoort, V. Shabro, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Analysis of hole transport in a polyfluorene-based copolymer-evidence for the absence of correlated disorder. Appl. Phys. Lett. 94, 163307 (2009).CrossRef R.J. de Vries, S.L.M. van Mensfoort, V. Shabro, S.I.E. Vulto, R.A.J. Janssen, and R. Coehoorn, Analysis of hole transport in a polyfluorene-based copolymer-evidence for the absence of correlated disorder. Appl. Phys. Lett. 94, 163307 (2009).CrossRef
42.
Zurück zum Zitat C.K. Yang, C.M. Yang, H.H. Liao, S.F. Horng, and H.F. Meng, Current injection and transport in polyfluorene. Appl. Phys. Lett. 91, 093504 (2007).CrossRef C.K. Yang, C.M. Yang, H.H. Liao, S.F. Horng, and H.F. Meng, Current injection and transport in polyfluorene. Appl. Phys. Lett. 91, 093504 (2007).CrossRef
43.
Zurück zum Zitat S.L.M. van Mensfoort, V. Shabro, R.J. de Vries, R.A.J. Janssen, and R. Coehoorn, Hole transport in the organic small molecule material—NPD: evidence for the presence of correlated disorder. J. Appl. Phys. 107, 113710 (2010).CrossRef S.L.M. van Mensfoort, V. Shabro, R.J. de Vries, R.A.J. Janssen, and R. Coehoorn, Hole transport in the organic small molecule material—NPD: evidence for the presence of correlated disorder. J. Appl. Phys. 107, 113710 (2010).CrossRef
44.
Zurück zum Zitat C.C. Lee, M.Y. Chang, S.W. Liu, P.T. Huang, Y.C. Chen, Y. Chang, Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. J. Appl. Phys. 101, 114501 (2007).CrossRef C.C. Lee, M.Y. Chang, S.W. Liu, P.T. Huang, Y.C. Chen, Y. Chang, Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. J. Appl. Phys. 101, 114501 (2007).CrossRef
45.
Zurück zum Zitat S. Bange, A. Kuksov, D. Neher, A. Vollmer, N. Koch, A. Ludemann, and S. Heun, The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. J. Appl. Phys. 104, 104506 (2008).CrossRef S. Bange, A. Kuksov, D. Neher, A. Vollmer, N. Koch, A. Ludemann, and S. Heun, The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. J. Appl. Phys. 104, 104506 (2008).CrossRef
Metadaten
Titel
Effects of Charge Carrier Transport and Band Structure Models on the Performance of Blue-Emitting Polyfluorene-Based Light-Emitting Diodes
verfasst von
Aliasghar Ayobi
Publikationsdatum
31.01.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09435-8

Weitere Artikel der Ausgabe 4/2022

Journal of Electronic Materials 4/2022 Zur Ausgabe

Neuer Inhalt