Skip to main content
Top
Published in: Cellulose 3/2012

01-06-2012 | Original Paper

Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers

Authors: Hanieh Kargarzadeh, Ishak Ahmad, Ibrahim Abdullah, Alain Dufresne, Siti Yasmine Zainudin, Rasha M. Sheltami

Published in: Cellulose | Issue 3/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanocrystals (CNC) were first isolated from kenaf bast fibers and then characterized. The raw fibers were subjected to alkali treatment and bleaching treatment and subsequent hydrolysis with sulfuric acid. The influence of the reaction time on the morphology, crystallinity, and thermal stability of CNC was investigated. Fourier transform infrared spectroscopy showed that lignin and hemicellulose were almost entirely removed during the alkali and bleaching treatments. The morphology and dimensions of the fibers and acid-released CNC were characterized by field emission scanning electron microscopy and transmission electron microscopy. X-Ray diffraction analysis revealed that the crystallinity first increases upon hydrolysis and then decreases after long durations of hydrolysis. The optimal extraction time was found to be around 40 min during hydrolysis at 45 °C with 65% sulfuric acid. The thermal stability was found to decrease as the hydrolysis time increased. The electrophoretic mobility of the CNC suspensions was measured using the zeta potential, and it ranged from −8.7 to −95.3 mV.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad I, Mosadeghzad Z, Daik R, Ramli A (2008) The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. J Appl Polym Sci 109:3651–3658CrossRef Ahmad I, Mosadeghzad Z, Daik R, Ramli A (2008) The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. J Appl Polym Sci 109:3651–3658CrossRef
go back to reference Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues-wheat straw and soy hulls. Bioresor Technol 99:1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues-wheat straw and soy hulls. Bioresor Technol 99:1664–1671CrossRef
go back to reference Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in a acrylic polymer matrix. Macromol Symp 221:95–104CrossRef Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in a acrylic polymer matrix. Macromol Symp 221:95–104CrossRef
go back to reference Araki J, Wada M, Kuga S, Okano T (1998) Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75–82CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75–82CrossRef
go back to reference Ashori A, Jalaluddin H, Raverty WD, Mohd Nor MY (2006) Chemical and morphological characteristics of Malaysia Cultivated kenaf (Hibiscuse cannabinus) fiber. Polym Plast Technol 45:131–134CrossRef Ashori A, Jalaluddin H, Raverty WD, Mohd Nor MY (2006) Chemical and morphological characteristics of Malaysia Cultivated kenaf (Hibiscuse cannabinus) fiber. Polym Plast Technol 45:131–134CrossRef
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef
go back to reference Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from Phoenix Dactylifera–L, preparation of cellulose whiskers and natural rubber—based nanocomposites. J Biobas Mat Bioenergy 3:81–90CrossRef Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from Phoenix Dactylifera–L, preparation of cellulose whiskers and natural rubber—based nanocomposites. J Biobas Mat Bioenergy 3:81–90CrossRef
go back to reference Bismarck A, Mishra S, Lampke T (2005) Plant fiber as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fiber biopolymers, and biocomposites. CRC Press, Boca Raton, vol 2, pp 37–108 Bismarck A, Mishra S, Lampke T (2005) Plant fiber as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fiber biopolymers, and biocomposites. CRC Press, Boca Raton, vol 2, pp 37–108
go back to reference Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fiber. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fiber. Prog Polym Sci 24:221–274CrossRef
go back to reference Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystal from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystal from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef
go back to reference Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76:607–615CrossRef Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76:607–615CrossRef
go back to reference Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81:720–725CrossRef Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81:720–725CrossRef
go back to reference de Souze Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–787CrossRef de Souze Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–787CrossRef
go back to reference Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef
go back to reference Dufresne A (2008) Cellulose-based composites and nanocomposites. In: Gandini A, Belgacem MN (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, vol 19, pp 401–418 Dufresne A (2008) Cellulose-based composites and nanocomposites. In: Gandini A, Belgacem MN (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, vol 19, pp 401–418
go back to reference Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80:852–859CrossRef Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80:852–859CrossRef
go back to reference Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRef Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRef
go back to reference Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRef Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRef
go back to reference Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
go back to reference Garcia de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced poly(vinyl acetate) nanocomposite. Cellulose 13:261–270CrossRef Garcia de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced poly(vinyl acetate) nanocomposite. Cellulose 13:261–270CrossRef
go back to reference Hunter RJ (1981) Zeta potential in colloids science. Academic Press, New York Hunter RJ (1981) Zeta potential in colloids science. Academic Press, New York
go back to reference Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibres. Bioresour 4:626–639 Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibres. Bioresour 4:626–639
go back to reference Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohyd Polym 76:94–99CrossRef Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohyd Polym 76:94–99CrossRef
go back to reference Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82:329–336CrossRef Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82:329–336CrossRef
go back to reference Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohyd Polym 85:228–236CrossRef Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohyd Polym 85:228–236CrossRef
go back to reference Mohd Edeerozey AM, Hazizan MA, Azhar AB, Zainal Ariffin MI (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025CrossRef Mohd Edeerozey AM, Hazizan MA, Azhar AB, Zainal Ariffin MI (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025CrossRef
go back to reference Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose 15:149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose 15:149–159CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
go back to reference Roman M, Winter WT (2004) Effect of sulphated groups from sulphuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1048–1054CrossRef Roman M, Winter WT (2004) Effect of sulphated groups from sulphuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1048–1054CrossRef
go back to reference Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibres: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92CrossRef Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibres: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92CrossRef
go back to reference Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. Embrapa Instrumentação Agropecuária, São Carlos, pp 115–134 Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. Embrapa Instrumentação Agropecuária, São Carlos, pp 115–134
go back to reference Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibres and their characterization. Ind Crops Prod 2:1–8CrossRef Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibres and their characterization. Ind Crops Prod 2:1–8CrossRef
go back to reference Segal L, Greely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Greely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50CrossRef Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50CrossRef
go back to reference Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (Capim Dourado). Cellulose 17:289–298CrossRef Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (Capim Dourado). Cellulose 17:289–298CrossRef
go back to reference Swingle RS, Urias AR, Doyle JC, Voigt RL (1978) Chemical composition of kenaf forage and its digestibility by lambs and in vitro. J Anim Sci 46:1346–1350 Swingle RS, Urias AR, Doyle JC, Voigt RL (1978) Chemical composition of kenaf forage and its digestibility by lambs and in vitro. J Anim Sci 46:1346–1350
go back to reference Troedec M, Sedan D, Peyratout C, Bonnet J, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatment on the composition and structure of hemp fibres. Compos Part A 39:514–522CrossRef Troedec M, Sedan D, Peyratout C, Bonnet J, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatment on the composition and structure of hemp fibres. Compos Part A 39:514–522CrossRef
go back to reference Wang N, Ding E, Cheng R (2007) Thermal degradation behavior of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behavior of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef
go back to reference Yang HP, Yan R, Hen HP, Lee DH, Zheng CG (2007) Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang HP, Yan R, Hen HP, Lee DH, Zheng CG (2007) Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
go back to reference Zuluaga R, Putaux JL, Velez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 76:51–59CrossRef Zuluaga R, Putaux JL, Velez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 76:51–59CrossRef
Metadata
Title
Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
Authors
Hanieh Kargarzadeh
Ishak Ahmad
Ibrahim Abdullah
Alain Dufresne
Siti Yasmine Zainudin
Rasha M. Sheltami
Publication date
01-06-2012
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2012
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9684-6

Other articles of this Issue 3/2012

Cellulose 3/2012 Go to the issue