Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

28-04-2023 | Technical Article

Effects of Nb and Mo on 1200 °C Steam Oxidation and Mechanical Properties of FeCrAl Alloys for Fuel Cladding Materials

Authors: Chundong Wang, Huawei Zhang, Jie Pan, Jiwei Lin, Ping Cao, Cheng Su, Chunyu Yin, Cong Li, Xueshan Xiao

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron–chromium–aluminium (FeCrAl) alloy compositions should be optimised to improve performance. The effects of Nb and Mo on the high-temperature steam oxidation of FeCrAl alloys were investigated at 1200 °C. The oxide film of a series of alloys with different Nb contents mainly comprised Al2O3 and the surface morphology was wrinkled. For the series alloys with different Mo contents, when Mo was greater than 2 wt.%, the oxide film component also contained MoO3, in addition to Al2O3, with the presence of micropores. The oxidation weight gain decreased with Nb, owing to a great many Laves phases, which impeded the outward diffusion of Al. The oxidation weight gain increased with Mo, and this was attributed to the volatilisation of MoO3, which promoted the diffusion of oxygen. The yield strength of FeCrAl alloys increased with increased Nb and Mo and decreased with oxidation time. Nb and Mo promoted the precipitation of the Laves phases and increased the hindrance to grain boundaries, which favoured fine grain strengthening. This was critical to obtaining FeCrAl fuel cladding alloys with great steam oxidation resistance and mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P. Hofmann, Current Knowledge on Core Degradation Phenomena, A Review, J. Nucl. Mater., 1999, 270, p 194–211.CrossRef P. Hofmann, Current Knowledge on Core Degradation Phenomena, A Review, J. Nucl. Mater., 1999, 270, p 194–211.CrossRef
2.
go back to reference X.F. Lv, D.G. Lu, and B. Liu, Mechanism of Zirconium-Water Reaction for Pressurized Water Reactor, At. Energy Sci. Technol., 2010, 3, p 299–303. X.F. Lv, D.G. Lu, and B. Liu, Mechanism of Zirconium-Water Reaction for Pressurized Water Reactor, At. Energy Sci. Technol., 2010, 3, p 299–303.
3.
go back to reference M.N. Cinbiz, N. Brown, K.A. Terrani, R.R. Lowden, and Donald Erdman III, The Mechanical Response Evaluation of Advanced Claddings During Proposed Reactivity Initiated Accident Conditions, Energy Mater., 2017, pp. 355–365 M.N. Cinbiz, N. Brown, K.A. Terrani, R.R. Lowden, and Donald Erdman III, The Mechanical Response Evaluation of Advanced Claddings During Proposed Reactivity Initiated Accident Conditions, Energy Mater., 2017, pp. 355–365
4.
go back to reference X. Wu, T. Kozlowski, and J.D. Hales, Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding Under Normal Operation Conditions, Ann. Nucl. Energy., 2015, 85, p 763–775.CrossRef X. Wu, T. Kozlowski, and J.D. Hales, Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding Under Normal Operation Conditions, Ann. Nucl. Energy., 2015, 85, p 763–775.CrossRef
5.
go back to reference D.J. Park, H.G. Kim, and J.Y. Park, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465.CrossRef D.J. Park, H.G. Kim, and J.Y. Park, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465.CrossRef
6.
go back to reference J. Wang and R. Dailey, Accident Tolerant Fuels (FeCrAl Cladding & Coating) Performance Analysis in Boiling Water Reactor (BWR) by the MELCOR 186 UDGC, Nucl. Eng. Des., 2021, 371, p 110974.CrossRef J. Wang and R. Dailey, Accident Tolerant Fuels (FeCrAl Cladding & Coating) Performance Analysis in Boiling Water Reactor (BWR) by the MELCOR 186 UDGC, Nucl. Eng. Des., 2021, 371, p 110974.CrossRef
7.
go back to reference Y.Y. Zhang, H.Y. Sun, and H. Wang, Effects of Cr Element on the Crystal Structure, Microstructure, and Mechanical Properties of FeCrAl Alloys, Mater. Sci. Eng. A, 2021, 826, p 142003.CrossRef Y.Y. Zhang, H.Y. Sun, and H. Wang, Effects of Cr Element on the Crystal Structure, Microstructure, and Mechanical Properties of FeCrAl Alloys, Mater. Sci. Eng. A, 2021, 826, p 142003.CrossRef
8.
go back to reference R.B. Rebak, K.A. Terrani, W.P. Gassmann, and J.B. Williams, Improving Nuclear Power Plant Safety with FeCrAl Alloy Fuel Cladding, MRS Adv., 2017, 21–22, p 1217–1224.CrossRef R.B. Rebak, K.A. Terrani, W.P. Gassmann, and J.B. Williams, Improving Nuclear Power Plant Safety with FeCrAl Alloy Fuel Cladding, MRS Adv., 2017, 21–22, p 1217–1224.CrossRef
9.
go back to reference J.K. Bunn, R.L. Fang, M.R. Albing, A. Mehta, and M.J. Kramer, A High-Throughput Investigation of Fe-Cr-Al as a Novel High-Temperature Coating for Nuclear Cladding Materials, Nanotechnol., 2015, 26, p 274003.CrossRef J.K. Bunn, R.L. Fang, M.R. Albing, A. Mehta, and M.J. Kramer, A High-Throughput Investigation of Fe-Cr-Al as a Novel High-Temperature Coating for Nuclear Cladding Materials, Nanotechnol., 2015, 26, p 274003.CrossRef
10.
go back to reference K.O. Gunduz and A. Visibile, The Effect of Additive Manufacturing on the Initial High Temperature Oxidation Properties of RE-Containing FeCrAl alloys, Corros. Sci., 2021, 188, p 109553.CrossRef K.O. Gunduz and A. Visibile, The Effect of Additive Manufacturing on the Initial High Temperature Oxidation Properties of RE-Containing FeCrAl alloys, Corros. Sci., 2021, 188, p 109553.CrossRef
11.
go back to reference W.J. Ding, H. Shi, and A. Jianu, Molten Chloride Salts for next Generation Concentrated Solar Power Plants: Mitigation Strategies Against Corrosion of Structural Materials, Sol. Energy Mater. Sol. Cells, 2019, 193, p 298–313.CrossRef W.J. Ding, H. Shi, and A. Jianu, Molten Chloride Salts for next Generation Concentrated Solar Power Plants: Mitigation Strategies Against Corrosion of Structural Materials, Sol. Energy Mater. Sol. Cells, 2019, 193, p 298–313.CrossRef
12.
go back to reference K.G. Field, M.N. Gussev, and Y. Yamamoto, Deformation Behaviour of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications, J. Nucl. Mater., 2014, 454, p 352–358.CrossRef K.G. Field, M.N. Gussev, and Y. Yamamoto, Deformation Behaviour of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications, J. Nucl. Mater., 2014, 454, p 352–358.CrossRef
13.
go back to reference G. Berthomé, E. N’Dah, Y. Wouters, and A. Galerie, Temperature Dependence of Metastable Alumina Formation During Thermal Oxidation of FeCrAl Foils, Mater. Corros., 2005, 56, p 389–392.CrossRef G. Berthomé, E. N’Dah, Y. Wouters, and A. Galerie, Temperature Dependence of Metastable Alumina Formation During Thermal Oxidation of FeCrAl Foils, Mater. Corros., 2005, 56, p 389–392.CrossRef
14.
go back to reference C. Badini and F. Laurella, Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism, Surf. Coat. Technol., 2001, 135, p 291–298.CrossRef C. Badini and F. Laurella, Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism, Surf. Coat. Technol., 2001, 135, p 291–298.CrossRef
15.
go back to reference J. Engkvist, U. Bexell, M. Grehk, and M. Olsson, High Temperature Oxidation of FeCrAl-alloys—Influence of Al-Concentration on Oxide Layer Characteristics, Mater. Corros., 2009, 60, p 876–881.CrossRef J. Engkvist, U. Bexell, M. Grehk, and M. Olsson, High Temperature Oxidation of FeCrAl-alloys—Influence of Al-Concentration on Oxide Layer Characteristics, Mater. Corros., 2009, 60, p 876–881.CrossRef
16.
go back to reference J.G. Chęcmanowski and B. Szczygieł, Effect of a ZrO2 Coating Deposited by the Sol–Gel Method on the Resistance of FeCrAl Alloy in High-Temperature Oxidation Conditions, Mater. Chem. Phys., 2013, 139, p 944–952.CrossRef J.G. Chęcmanowski and B. Szczygieł, Effect of a ZrO2 Coating Deposited by the Sol–Gel Method on the Resistance of FeCrAl Alloy in High-Temperature Oxidation Conditions, Mater. Chem. Phys., 2013, 139, p 944–952.CrossRef
17.
go back to reference D. Pan, R.Q. Zhang, H.J. Wang, Y. Xu, and H. Wang, In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys, J. Mater. Eng. Perform., 2018, 27, p 6407–6414.CrossRef D. Pan, R.Q. Zhang, H.J. Wang, Y. Xu, and H. Wang, In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys, J. Mater. Eng. Perform., 2018, 27, p 6407–6414.CrossRef
18.
go back to reference D. Pan, R.Q. Zhang, H. Wang, C. Lu, and Y.M. Liu, Formation and Stability of Oxide Layer in FeCrAl Fuel Cladding Material Under High-Temperature Steam, J. Alloys Compd., 2016, 684, p 549–555.CrossRef D. Pan, R.Q. Zhang, H. Wang, C. Lu, and Y.M. Liu, Formation and Stability of Oxide Layer in FeCrAl Fuel Cladding Material Under High-Temperature Steam, J. Alloys Compd., 2016, 684, p 549–555.CrossRef
19.
go back to reference C.S. Giggins and F.S. Pettit, Oxidation of Ni -Cr -Al Alloys Between 1000 and 1200°C, J. Electrochem. Soc., 1971, 118, p 1782–1789.CrossRef C.S. Giggins and F.S. Pettit, Oxidation of Ni -Cr -Al Alloys Between 1000 and 1200°C, J. Electrochem. Soc., 1971, 118, p 1782–1789.CrossRef
20.
go back to reference T.H. Huang, D. Naumenko, P. Song, Lu. Jiansheng, and W.J. Quadakkers, Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy, Oxid. Met., 2018, 90, p 671–690.CrossRef T.H. Huang, D. Naumenko, P. Song, Lu. Jiansheng, and W.J. Quadakkers, Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy, Oxid. Met., 2018, 90, p 671–690.CrossRef
21.
go back to reference J.P. Wilber, M.J. Bennett, and J.R. Nicholls, Life-Time Extension of Alumina Forming FeCrAl–RE Alloys: Influence of Alloy Thickness, Mater. High Temp., 2000, 17, p 125–132.CrossRef J.P. Wilber, M.J. Bennett, and J.R. Nicholls, Life-Time Extension of Alumina Forming FeCrAl–RE Alloys: Influence of Alloy Thickness, Mater. High Temp., 2000, 17, p 125–132.CrossRef
22.
go back to reference W.H. Zhang, Y. Qian, R.R. Sun, X.D. Lin, and M.Y. Yao, Oxidation Characteristics of Fe22Cr5Al3Mo-xNb Alloys in High Temperature Steam, Corros. Sci., 2021, 191, p 109722.CrossRef W.H. Zhang, Y. Qian, R.R. Sun, X.D. Lin, and M.Y. Yao, Oxidation Characteristics of Fe22Cr5Al3Mo-xNb Alloys in High Temperature Steam, Corros. Sci., 2021, 191, p 109722.CrossRef
23.
go back to reference J. Eklund, B. Jönsson, A. Persdotter, and J. Liske, The Influence of Silicon on the Corrosion Properties of FeCrAl Model Alloys in Oxidizing Environments at 600 °C, Corros. Sci., 2018, 144, p 266–276.CrossRef J. Eklund, B. Jönsson, A. Persdotter, and J. Liske, The Influence of Silicon on the Corrosion Properties of FeCrAl Model Alloys in Oxidizing Environments at 600 °C, Corros. Sci., 2018, 144, p 266–276.CrossRef
24.
go back to reference R. Liu, H.L. Sun, Q.Q. Guo, M.J. Jiang, and X.S. Jiang, A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments, J. Mater. Eng. Perform., 2022 R. Liu, H.L. Sun, Q.Q. Guo, M.J. Jiang, and X.S. Jiang, A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments, J. Mater. Eng. Perform., 2022
25.
go back to reference D. Singh, P. Sharma, and A. Parashar, Atomistic Simulations to Study Point Defect Dynamics in Bi-Crystalline Niobium, Mater. Chem. Phys., 2020, 255, p 123628.CrossRef D. Singh, P. Sharma, and A. Parashar, Atomistic Simulations to Study Point Defect Dynamics in Bi-Crystalline Niobium, Mater. Chem. Phys., 2020, 255, p 123628.CrossRef
26.
go back to reference Y. Yamamoto, B.A. Pint, and K.A. Terrani, Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 03–716.CrossRef Y. Yamamoto, B.A. Pint, and K.A. Terrani, Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 03–716.CrossRef
27.
go back to reference H. Najafi, J. Rassizadehghani, and A. Halvaaee, Mechanical Properties of as Cast Microalloyed Steels Containing V, Nb and Ti, Mater. Sci. Technol., 2007, 23, p 699–705.CrossRef H. Najafi, J. Rassizadehghani, and A. Halvaaee, Mechanical Properties of as Cast Microalloyed Steels Containing V, Nb and Ti, Mater. Sci. Technol., 2007, 23, p 699–705.CrossRef
28.
go back to reference J. Xu, X.Q. Zhao, and S.K. Gong, Effect of Mo on the Oxidation Behaviour of NiTiAl Alloy, Mater. Sci. Forum, 2007, 62, p 1481–1484.CrossRef J. Xu, X.Q. Zhao, and S.K. Gong, Effect of Mo on the Oxidation Behaviour of NiTiAl Alloy, Mater. Sci. Forum, 2007, 62, p 1481–1484.CrossRef
29.
go back to reference Y.C. Fang, Y.G. Chen, C.L. Wu, X.B. Duan, and S.R. Wang, The Effects of W or Mo on the High-Temperature Properties of Fe-21Cr Alloy Interconnects, J. Funct. Mater., 2010, 41, p 1469–1472. Y.C. Fang, Y.G. Chen, C.L. Wu, X.B. Duan, and S.R. Wang, The Effects of W or Mo on the High-Temperature Properties of Fe-21Cr Alloy Interconnects, J. Funct. Mater., 2010, 41, p 1469–1472.
30.
go back to reference J. Shu, H.Y. Bi and X. Li, The Effects of Molybdenum Addition on High Temperature Oxidation Behaviour at 1,000 °C of Type 444 Ferritic Stainless Steel, Oxid. Met., 2012, 78, p 253–267.CrossRef J. Shu, H.Y. Bi and X. Li, The Effects of Molybdenum Addition on High Temperature Oxidation Behaviour at 1,000 °C of Type 444 Ferritic Stainless Steel, Oxid. Met., 2012, 78, p 253–267.CrossRef
31.
go back to reference J. Xu, X. Zhao, and S. Gong, Effect of Nb on the High Temperature Oxidation Behaviour of TiNiAl Alloys, Acta Metall. Sin., 2006, 42, p 820–826. J. Xu, X. Zhao, and S. Gong, Effect of Nb on the High Temperature Oxidation Behaviour of TiNiAl Alloys, Acta Metall. Sin., 2006, 42, p 820–826.
32.
go back to reference X.Y. Cheng, X.J. Wan, and J.N. Shen, Effect of Nb on oxidation Behaviour of TiAl at High Temperature, J. Chin. Soc. Corros. Prot., 2002, 22, p 69–71. X.Y. Cheng, X.J. Wan, and J.N. Shen, Effect of Nb on oxidation Behaviour of TiAl at High Temperature, J. Chin. Soc. Corros. Prot., 2002, 22, p 69–71.
33.
go back to reference F.A. Golightly, F.H. Stott, and G.C. Wood, The Influence of Yttrium Additions on the Oxide-Scale Adhesion to an Iron-Chromium-Aluminium Alloy, Oxid. Met., 1976, 10, p 163–187.CrossRef F.A. Golightly, F.H. Stott, and G.C. Wood, The Influence of Yttrium Additions on the Oxide-Scale Adhesion to an Iron-Chromium-Aluminium Alloy, Oxid. Met., 1976, 10, p 163–187.CrossRef
34.
go back to reference V.K. Tolpygo, The Morphology of Thermally Grown α-Al2O3 Scales on Fe-Cr-Al Alloys, Oxid. Met., 1999, 51, p 449–477.CrossRef V.K. Tolpygo, The Morphology of Thermally Grown α-Al2O3 Scales on Fe-Cr-Al Alloys, Oxid. Met., 1999, 51, p 449–477.CrossRef
35.
go back to reference V.K. Tolpygo and D.R. Clarke, Wrinkling of α-Alumina Films Grown by Thermal Oxidation—I. Quantitative Studies on Single Crystals of Fe–Cr–Al Alloy, Acta Mater., 1998, 46, p 5153–5166.CrossRef V.K. Tolpygo and D.R. Clarke, Wrinkling of α-Alumina Films Grown by Thermal Oxidation—I. Quantitative Studies on Single Crystals of Fe–Cr–Al Alloy, Acta Mater., 1998, 46, p 5153–5166.CrossRef
36.
go back to reference T.B. Zhang, H. Ding, and Z.H. Deng, Synergistic Effect of Nb and Mo on Oxidation Behaviour of TiAl Based Alloy at High Temperature, Rare Met. Mater. Eng., 2012, 41, p 33–37. T.B. Zhang, H. Ding, and Z.H. Deng, Synergistic Effect of Nb and Mo on Oxidation Behaviour of TiAl Based Alloy at High Temperature, Rare Met. Mater. Eng., 2012, 41, p 33–37.
37.
go back to reference Z. Yang, J. Pan, and Z.X. Wang, New Insights into the Mechanism of Yttrium Changing High-Temperature Oxide Growth of Fe-13Cr–6Al–2Mo–0.5Nb Alloy for Fuel Cladding, Corros. Sci., 2020, 172, p 108728.CrossRef Z. Yang, J. Pan, and Z.X. Wang, New Insights into the Mechanism of Yttrium Changing High-Temperature Oxide Growth of Fe-13Cr–6Al–2Mo–0.5Nb Alloy for Fuel Cladding, Corros. Sci., 2020, 172, p 108728.CrossRef
38.
go back to reference Z.Q. Sun, P.D. Edmondson, and Y. Yamamoto, Effects of Laves Phase Particles on Recovery and Recrystallization Behaviours of Nb-Containing FeCrAl Alloys, Acta Mater., 2018, 144, p 716–727.CrossRef Z.Q. Sun, P.D. Edmondson, and Y. Yamamoto, Effects of Laves Phase Particles on Recovery and Recrystallization Behaviours of Nb-Containing FeCrAl Alloys, Acta Mater., 2018, 144, p 716–727.CrossRef
39.
go back to reference P. Pérez, M.F. López, and J.A. Jiménez, Oxidation Behaviour of Al-Alloyed ZrSi2 at 700 °C, Intermetallics, 2000, 08, p 1393–1398.CrossRef P. Pérez, M.F. López, and J.A. Jiménez, Oxidation Behaviour of Al-Alloyed ZrSi2 at 700 °C, Intermetallics, 2000, 08, p 1393–1398.CrossRef
40.
go back to reference H.S. Seo, D.W. Yun, and K.Y. Kim, Oxidation Behaviour of ferritic Stainless Steel Containing Nb, Nb–Si and Nb–Ti for SOFC Interconnect, Int. J. Hydrogen Energy, 2012, 38, p 2432–2442.CrossRef H.S. Seo, D.W. Yun, and K.Y. Kim, Oxidation Behaviour of ferritic Stainless Steel Containing Nb, Nb–Si and Nb–Ti for SOFC Interconnect, Int. J. Hydrogen Energy, 2012, 38, p 2432–2442.CrossRef
41.
go back to reference L. Shen, B.J. Wu, K. Zhao, and H.B. Peng, Reason for Negative Effect of Nb Addition on Oxidation Resistance of Alumina-Forming Austenitic Stainless Steel at 1323 K, Corros. Sci., 2021, 191, p 109754.CrossRef L. Shen, B.J. Wu, K. Zhao, and H.B. Peng, Reason for Negative Effect of Nb Addition on Oxidation Resistance of Alumina-Forming Austenitic Stainless Steel at 1323 K, Corros. Sci., 2021, 191, p 109754.CrossRef
42.
go back to reference Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, and W.Y. Li, Effect and Role of Alloyed Nb on the Air Oxidation Behaviour of Ni-Cr-Fe Alloys at 1000 °C, Corros. Sci., 2017, 127, p 10–20.CrossRef Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, and W.Y. Li, Effect and Role of Alloyed Nb on the Air Oxidation Behaviour of Ni-Cr-Fe Alloys at 1000 °C, Corros. Sci., 2017, 127, p 10–20.CrossRef
43.
go back to reference Y.X. Xu, J.T. Lu, W.Y. Li, and X.W. Yang, Oxidation Behaviour of Nb-Rich Ni-Cr-Fe Alloys: Role and Effect of Carbides Precipitates, Corros. Sci., 2018, 140, p 252–259.CrossRef Y.X. Xu, J.T. Lu, W.Y. Li, and X.W. Yang, Oxidation Behaviour of Nb-Rich Ni-Cr-Fe Alloys: Role and Effect of Carbides Precipitates, Corros. Sci., 2018, 140, p 252–259.CrossRef
44.
go back to reference C.L. Wu, L.G. Ma, Y.F. Zhu, X.Q. Guo, Y.L. Wu, Z. Wu, X. Zhang, and L.H. Hou, High-Temperature Reaction Mechanism of Molybdenum Metal in Direct Coal Liquefaction Residue, Catal, 2022, 12(8), p 926–939.CrossRef C.L. Wu, L.G. Ma, Y.F. Zhu, X.Q. Guo, Y.L. Wu, Z. Wu, X. Zhang, and L.H. Hou, High-Temperature Reaction Mechanism of Molybdenum Metal in Direct Coal Liquefaction Residue, Catal, 2022, 12(8), p 926–939.CrossRef
45.
go back to reference S.J. Wu, J. Li, C.J. Li, Y.Y. Li, and L.Y. Xiong, Preliminary Study on the Fabrication of 14Cr-ODS FeCrAl Alloy by Powder Forging, J. Mater. Sci. Technol., 2021, 83, p 49–57.CrossRef S.J. Wu, J. Li, C.J. Li, Y.Y. Li, and L.Y. Xiong, Preliminary Study on the Fabrication of 14Cr-ODS FeCrAl Alloy by Powder Forging, J. Mater. Sci. Technol., 2021, 83, p 49–57.CrossRef
46.
go back to reference P. Wang, Z. Gao, and D.F. Cheng, Effect of Ni–P Alloy Coating on Microstructures and Properties of Vacuum Brazed Joints of SiCp/Al Composites, Mod. Phys. Lett. B, 2017, 31, p 1750082.CrossRef P. Wang, Z. Gao, and D.F. Cheng, Effect of Ni–P Alloy Coating on Microstructures and Properties of Vacuum Brazed Joints of SiCp/Al Composites, Mod. Phys. Lett. B, 2017, 31, p 1750082.CrossRef
47.
go back to reference O. Yuya and M.-F. Eri, High-Temperature Oxidation Behaviour and Its Oxide Layer Structure Formed on Ti-Nb Alloys, J. Jpn. Inst. Met., 2018, 82, p 232–239.CrossRef O. Yuya and M.-F. Eri, High-Temperature Oxidation Behaviour and Its Oxide Layer Structure Formed on Ti-Nb Alloys, J. Jpn. Inst. Met., 2018, 82, p 232–239.CrossRef
48.
go back to reference X.R. Ren, H.J. Li, and Q.G. Fu, TaB2–SiC–Si Multiphase Oxidation Protective Coating for SiC-Coated Carbon/Carbon Composites, J. Eur. Ceram. Soc., 2013, 33, p 2953–2959.CrossRef X.R. Ren, H.J. Li, and Q.G. Fu, TaB2–SiC–Si Multiphase Oxidation Protective Coating for SiC-Coated Carbon/Carbon Composites, J. Eur. Ceram. Soc., 2013, 33, p 2953–2959.CrossRef
49.
go back to reference M.-F. Eri and T. Yoshinobu, Fabrication of TiO2/SiO2 Composite Coating via a High-Temperature Self-Organizing Microporous TiO2 Layer on Ti, J. Jpn. Inst. Met. Mater., 2018, 82, p 2008–2014. M.-F. Eri and T. Yoshinobu, Fabrication of TiO2/SiO2 Composite Coating via a High-Temperature Self-Organizing Microporous TiO2 Layer on Ti, J. Jpn. Inst. Met. Mater., 2018, 82, p 2008–2014.
50.
go back to reference K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding, J. Nucl. Mater., 2014, 448, p 420–435.CrossRef K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding, J. Nucl. Mater., 2014, 448, p 420–435.CrossRef
Metadata
Title
Effects of Nb and Mo on 1200 °C Steam Oxidation and Mechanical Properties of FeCrAl Alloys for Fuel Cladding Materials
Authors
Chundong Wang
Huawei Zhang
Jie Pan
Jiwei Lin
Ping Cao
Cheng Su
Chunyu Yin
Cong Li
Xueshan Xiao
Publication date
28-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08232-6

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners