Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

04-05-2023 | Technical Article

Analysis of Mechanical Behavior and Nanostructural Evolution of the Au/AuAl Alloy Interface

Authors: Bo Li, Zhengyun Zhang, Xiaolong Zhou, Manmen Liu, Yu Jie

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Au/AuAl alloy interface model was established by classical molecular dynamics simulation, and the uniaxial tensile deformation behavior of the interface model at 300 K and 0.05 Å/ps strain rate and the evolution of dislocations in nanostructures were studied in detail. Simulation results show that the initial stress is negative due to the internal stress caused by the lattice mismatch between Al and AuAl alloys. In Au/AuAl alloy interface model, when the plastic deformation in the local region reaches the limit, large internal stress will be generated due to plastic exhaustion and uneven deformation, which makes some atoms leave the lattice position to form many micro-voids. With increasing strain, they will coalesce into cracks. The fracture of perfect interface model is preferentially formed in Al matrix. After the introduction of circular cracks in the interface center region and above the center region of the Perfect-III interface model, cracks propagation occur in AuAl alloy region during the tensile process. Dislocation density tends to increase when the tensile strength exceeds the maximum value. The glide of Shockley partial dislocation is the main mechanism of interface deformation. This study enriches the analysis of nanostructural evolution of Au/AuAl alloy interface and similar interfaces during deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.J.S. Anand, C.K. Yau, and L.B. Huat, Oxidation Study on As-Bonded Intermetallic of Copper Wire–Aluminum Bond Pad Metallization for Electronic Microchip, Mater. Chem. Phys., 2012, 136(2–3), p 638–647.CrossRef T.J.S. Anand, C.K. Yau, and L.B. Huat, Oxidation Study on As-Bonded Intermetallic of Copper Wire–Aluminum Bond Pad Metallization for Electronic Microchip, Mater. Chem. Phys., 2012, 136(2–3), p 638–647.CrossRef
2.
go back to reference J. Qi, N.C. Hung, M. Li et al., Effects of Process Parameters on Bondability in Ultrasonic Ball Bonding, Scr. Mater., 2006, 54(2), p 293–297.CrossRef J. Qi, N.C. Hung, M. Li et al., Effects of Process Parameters on Bondability in Ultrasonic Ball Bonding, Scr. Mater., 2006, 54(2), p 293–297.CrossRef
3.
go back to reference Y.C. Guo, G.X. Yang, J.W. Kong et al., Development and Application of Gold Bonding Wires, Precious Metals, 2009, 30(3), p 68–78. Y.C. Guo, G.X. Yang, J.W. Kong et al., Development and Application of Gold Bonding Wires, Precious Metals, 2009, 30(3), p 68–78.
4.
go back to reference G.X. Yang, J.W. Kong, Y.C. Guo et al., Study on Gold Bonding Wires Applied on Semiconductor Package, Precious Metals, 2010, 31(1), p 13–16. G.X. Yang, J.W. Kong, Y.C. Guo et al., Study on Gold Bonding Wires Applied on Semiconductor Package, Precious Metals, 2010, 31(1), p 13–16.
5.
go back to reference L. Chang, B. Sun, P.L. Xu et al., Analysis on Main Factors of Gold Wire Bonding Failure, Equip. Electron. Prod. Manuf., 2021, 050(002), p 23–28. L. Chang, B. Sun, P.L. Xu et al., Analysis on Main Factors of Gold Wire Bonding Failure, Equip. Electron. Prod. Manuf., 2021, 050(002), p 23–28.
6.
go back to reference C.D. Breach and F.W. Wulff, Intermetallic Growth in Gold Ball Bonds Aged at 175 C: Comparison Between Two 4N Wires of Different Chemistry, Gold Bull., 2009, 42(2), p 92–105.CrossRef C.D. Breach and F.W. Wulff, Intermetallic Growth in Gold Ball Bonds Aged at 175 C: Comparison Between Two 4N Wires of Different Chemistry, Gold Bull., 2009, 42(2), p 92–105.CrossRef
7.
go back to reference H. Xu, C. Liu, V.V. Silberschmidt et al., Intermetallic Phase Transformations in Au–Al Wire Bonds, Intermetallics, 2011, 19(12), p 1808–1816.CrossRef H. Xu, C. Liu, V.V. Silberschmidt et al., Intermetallic Phase Transformations in Au–Al Wire Bonds, Intermetallics, 2011, 19(12), p 1808–1816.CrossRef
8.
go back to reference D.V. Vertyanov, I.A. Belyakov, S.P. Timoshenkov, A.V. Borisova, and V.N. Sidorenko, Effects of Gold–Aluminum Intermetallic Compounds on Chip Wire Bonding Interconnections Reliability, in 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2020, p 2216–2220. D.V. Vertyanov, I.A. Belyakov, S.P. Timoshenkov, A.V. Borisova, and V.N. Sidorenko, Effects of Gold–Aluminum Intermetallic Compounds on Chip Wire Bonding Interconnections Reliability, in 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2020, p 2216–2220.
9.
go back to reference M.J. McCracken, H.J. Kim, M. Mayer, J. Persic, J.S. Hwang, and J.T. Moon, Assessing Au-Al Wire Bond Reliability Using Integrated Stress Sensors, in 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2010, p 1–9. M.J. McCracken, H.J. Kim, M. Mayer, J. Persic, J.S. Hwang, and J.T. Moon, Assessing Au-Al Wire Bond Reliability Using Integrated Stress Sensors, in 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2010, p 1–9.
10.
go back to reference S.S. Ahmad and S.C. Smith, Au/Al Wire Bond Interface Resistance Degradation Rate Simulations, IEEE Trans. Device Mater. Reliab., 2019, 19(4), p 774–781.CrossRef S.S. Ahmad and S.C. Smith, Au/Al Wire Bond Interface Resistance Degradation Rate Simulations, IEEE Trans. Device Mater. Reliab., 2019, 19(4), p 774–781.CrossRef
11.
go back to reference R. Huang, Y.Y. Tan, J. Walter, et al. Simulation of Diffusion Controlled Intermetallic Formation of Au/Al Interface, in 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. IEEE, 2012, p 1/7–7/7. R. Huang, Y.Y. Tan, J. Walter, et al. Simulation of Diffusion Controlled Intermetallic Formation of Au/Al Interface, in 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. IEEE, 2012, p 1/7–7/7.
12.
go back to reference H.S. Chang, K.C. Hsieh, T. Martens et al., Wire-Bond Void Formation During High Temperature Aging, IEEE Trans. Compon. Packag. Technol., 2004, 27(1), p 155–160.CrossRef H.S. Chang, K.C. Hsieh, T. Martens et al., Wire-Bond Void Formation During High Temperature Aging, IEEE Trans. Compon. Packag. Technol., 2004, 27(1), p 155–160.CrossRef
13.
go back to reference H. Xu, C. Liu, V.V. Silberschmidt et al., A Micromechanism Study of Thermosonic Gold Wire Bonding on Aluminum Pad, J. Appl. Phys., 2010, 108(11), p 113517.CrossRef H. Xu, C. Liu, V.V. Silberschmidt et al., A Micromechanism Study of Thermosonic Gold Wire Bonding on Aluminum Pad, J. Appl. Phys., 2010, 108(11), p 113517.CrossRef
14.
go back to reference L.I.N. Xiaze and W.E.N. Bianying, Influence of Interfacial Effect on Heat Conduction Behavior of Functional Composites, Acta Mater. Compos. Sin., 2022, 39(4), p 1498–1510. L.I.N. Xiaze and W.E.N. Bianying, Influence of Interfacial Effect on Heat Conduction Behavior of Functional Composites, Acta Mater. Compos. Sin., 2022, 39(4), p 1498–1510.
15.
go back to reference M. Bagheripoor and R. Klassen, The Effect of Crystal Anisotropy and Pre-Existing Defects on the Incipient Plasticity of FCC Single Crystals During Nanoindentation, Mech. Mater., 2020, 143, p 103311.CrossRef M. Bagheripoor and R. Klassen, The Effect of Crystal Anisotropy and Pre-Existing Defects on the Incipient Plasticity of FCC Single Crystals During Nanoindentation, Mech. Mater., 2020, 143, p 103311.CrossRef
16.
go back to reference Y. Li, A. Goyal, A. Chernatynskiy et al., Nanoindentation of Gold and Gold Alloys by Molecular Dynamics Simulation, Mater. Sci. Eng., A, 2016, 651, p 346–357.CrossRef Y. Li, A. Goyal, A. Chernatynskiy et al., Nanoindentation of Gold and Gold Alloys by Molecular Dynamics Simulation, Mater. Sci. Eng., A, 2016, 651, p 346–357.CrossRef
17.
go back to reference S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef
18.
go back to reference X.Y. Liu, C.L. Liu, and L.J. Borucki, A New Investigation of Copper’s Role in Enhancing Al–Cu Interconnect Electromigration Resistance from an Atomistic View, Acta Mater., 1999, 47(11), p 3227–3231.CrossRef X.Y. Liu, C.L. Liu, and L.J. Borucki, A New Investigation of Copper’s Role in Enhancing Al–Cu Interconnect Electromigration Resistance from an Atomistic View, Acta Mater., 1999, 47(11), p 3227–3231.CrossRef
19.
go back to reference S.G. Wang, C.X. Liu, and Z.Y. Jian, Molecular Dynamics Simulation of Diffusion Coefficient of Al-Cu Alloy, J Xi’an Technol Univ, 2018, 38(6), p 559–564. S.G. Wang, C.X. Liu, and Z.Y. Jian, Molecular Dynamics Simulation of Diffusion Coefficient of Al-Cu Alloy, J Xi’an Technol Univ, 2018, 38(6), p 559–564.
20.
go back to reference A.P. Thompson, S.J. Plimpton, and W. Mattson, General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials Under Periodic Boundary Conditions, J. Chem. Phys., 2009, 131(15), p 154107.CrossRefPubMed A.P. Thompson, S.J. Plimpton, and W. Mattson, General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials Under Periodic Boundary Conditions, J. Chem. Phys., 2009, 131(15), p 154107.CrossRefPubMed
21.
go back to reference A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2009, 18(1), p 015012.CrossRef A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2009, 18(1), p 015012.CrossRef
22.
go back to reference C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B, 1998, 58(17), p 11085.CrossRef C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B, 1998, 58(17), p 11085.CrossRef
23.
go back to reference A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell. Simul. Mater. Sci. Eng., 2012, 20(8), p 085007.CrossRef A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell. Simul. Mater. Sci. Eng., 2012, 20(8), p 085007.CrossRef
24.
go back to reference P. Wang, W. Chou, A. Nie et al., Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110(9), p 093521.CrossRef P. Wang, W. Chou, A. Nie et al., Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110(9), p 093521.CrossRef
25.
go back to reference R. Ferrando, Symmetry Breaking and Morphological Instabilities in Core-Shell Metallic Nanoparticles, J. Phys. Condens. Matter Inst. Phys. J., 2015, 27(1), p 013003.CrossRef R. Ferrando, Symmetry Breaking and Morphological Instabilities in Core-Shell Metallic Nanoparticles, J. Phys. Condens. Matter Inst. Phys. J., 2015, 27(1), p 013003.CrossRef
26.
go back to reference S.J.A. Koh, H.P. Lee, C. Lu et al., Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72(8), p 085414.CrossRef S.J.A. Koh, H.P. Lee, C. Lu et al., Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72(8), p 085414.CrossRef
27.
go back to reference P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)–Cu50Zr50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50.CrossRef P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)–Cu50Zr50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50.CrossRef
28.
go back to reference C.R. Dandekar and Y.C. Shin, Molecular Dynamics Based Cohesive Zone Law for Describing Al–SiC Interface Mechanics, Compos. A Appl. Sci. Manuf., 2011, 42(4), p 355–363.CrossRef C.R. Dandekar and Y.C. Shin, Molecular Dynamics Based Cohesive Zone Law for Describing Al–SiC Interface Mechanics, Compos. A Appl. Sci. Manuf., 2011, 42(4), p 355–363.CrossRef
29.
go back to reference J. Wang, R.F. Zhang, C.Z. Zhou et al., Interface Dislocation Patterns and Dislocation Nucleation in Face-Centered-Cubic and Body-Centered-Cubic Bicrystal Interfaces, Int. J. Plast, 2014, 53, p 40–55.CrossRef J. Wang, R.F. Zhang, C.Z. Zhou et al., Interface Dislocation Patterns and Dislocation Nucleation in Face-Centered-Cubic and Body-Centered-Cubic Bicrystal Interfaces, Int. J. Plast, 2014, 53, p 40–55.CrossRef
30.
go back to reference H. Van Swygenhoven, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3(6), p 399–403.CrossRefPubMed H. Van Swygenhoven, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3(6), p 399–403.CrossRefPubMed
31.
go back to reference P. Gupta and N. Yedla, Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature, J. Mater. Eng. Perform., 2017, 26(12), p 5694–5704.CrossRef P. Gupta and N. Yedla, Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature, J. Mater. Eng. Perform., 2017, 26(12), p 5694–5704.CrossRef
32.
go back to reference V. Yamakov, D. Wolf, S.R. Phillpot et al., Deformation Twinning in Nanocrystalline Al by Molecular-Dynamics Simulation, Acta Mater., 2002, 50(20), p 5005–5020.CrossRef V. Yamakov, D. Wolf, S.R. Phillpot et al., Deformation Twinning in Nanocrystalline Al by Molecular-Dynamics Simulation, Acta Mater., 2002, 50(20), p 5005–5020.CrossRef
33.
go back to reference J.Q. Ren, D. Yang, Q. Wang, X.F. Lu, S.D. Zhang, H.T. Xue, F. Tang, and Y.T. Ding, Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study, Rare Metal Mater. Eng., 2022, 51(7), p 2436–2445. J.Q. Ren, D. Yang, Q. Wang, X.F. Lu, S.D. Zhang, H.T. Xue, F. Tang, and Y.T. Ding, Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study, Rare Metal Mater. Eng., 2022, 51(7), p 2436–2445.
Metadata
Title
Analysis of Mechanical Behavior and Nanostructural Evolution of the Au/AuAl Alloy Interface
Authors
Bo Li
Zhengyun Zhang
Xiaolong Zhou
Manmen Liu
Yu Jie
Publication date
04-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08214-8

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners