Skip to main content
Top
Published in:

16-07-2019

Effects of Resampling in Determining the Number of Clusters in a Data Set

Authors: Rainer Dangl, Friedrich Leisch

Published in: Journal of Classification | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using cluster validation indices is a widely applied method in order to detect the number of groups in a data set and as such a crucial step in the model validation process in clustering. The study presented in this paper demonstrates how the accuracy of certain indices can be significantly improved when calculated numerous times on data sets resampled from the original data. There are obviously many ways to resample data—in this study, three very common options are used: bootstrapping, data splitting (without subset overlap of two subsamples), and random subsetting (with subset overlap of two subsamples). Index values calculated on the basis of resampled data sets are compared to the values obtained from the original data partition. The primary hypothesis of the study states that resampling does generally improve index accuracy. The hypothesis is based on the notion of cluster stability: if there are stable clusters in a data set, a clustering algorithm should produce consistent results for data sampled or resampled from the same source. The primary hypothesis was partly confirmed; for external validation measures, it does indeed apply. The secondary hypothesis states that the resampling strategy itself does not play a significant role. This was also shown to be accurate, yet slight deviations between the resampling schemes suggest that splitting appears to yield slightly better results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Appendix
This content is only visible if you are logged in and have the appropriate permissions.
Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Effects of Resampling in Determining the Number of Clusters in a Data Set
Authors
Rainer Dangl
Friedrich Leisch
Publication date
16-07-2019
Publisher
Springer US
Published in
Journal of Classification / Issue 3/2020
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-019-09328-2

Premium Partner