Skip to main content
Top
Published in: Quantum Information Processing 11/2023

01-11-2023

Efficient algorithm for full-state quantum circuit simulation with DD compression while maintaining accuracy

Authors: Yuhong Song, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Rui Xu, Han Wang

Published in: Quantum Information Processing | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of noisy intermediate-scale quantum machines, quantum processors show their supremacy in specific applications. To better understand the quantum behavior and verify larger quantum bit (qubit) algorithms, simulation on classical computers becomes crucial. However, as the simulated number of qubits increases, the full-state simulation suffers exponential memory increment for state vector storing. In order to compress the state vector, some existing works reduce the memory by data encoding compressors. Nevertheless, the memory requirement remains massive. Meanwhile, others utilize compact decision diagrams (DD) to represent the state vector, which only demands linear memory size. However, the existing DD-based simulation algorithm possesses many redundant calculations that require further exploration. Besides, the traditional normalization-based nodes merging method of DD amplifies the side influences of approximate error. Therefore, to tackle the above challenges, in this paper, we first fully explore the redundancies in the recursive-based DD simulation (RecurSim) algorithm. Inspired by the regularities of the quantum circuit model, a scale-based simulation (ScaleSim) algorithm is proposed, which removes plenty of unnecessary computations. Furthermore, to eliminate the influences of approximate error, we propose a new pre-check DD building method, namely PCB, which maintains the accuracy of DD representation and produces more memory saving. Comprehensive experiments show that our method achieves up to 24124.2\(\times \) acceleration and 3.2 \(\times \,10^7\times \) memory reduction than traditional DD-based methods on quantum algorithms while maintaining the representation accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
go back to reference Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)CrossRef Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)CrossRef
3.
go back to reference Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)CrossRefADS Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)CrossRefADS
4.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefMATHADS Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefMATHADS
5.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
6.
go back to reference Jiang, W., Xiong, J., Shi, Y.: A co-design framework of neural networks and quantum circuits towards quantum advantage. Nat. Commun. 12(1), 1–13 (2021) Jiang, W., Xiong, J., Shi, Y.: A co-design framework of neural networks and quantum circuits towards quantum advantage. Nat. Commun. 12(1), 1–13 (2021)
7.
go back to reference Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 470–475 (2017). IEEE Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 470–475 (2017). IEEE
8.
go back to reference Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:1712.05384 (2017) Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:​1712.​05384 (2017)
9.
go back to reference McCaskey, A., Dumitrescu, E., Chen, M., Lyakh, D., Humble, T.: Validating quantum-classical programming models with tensor network simulations. PLoS ONE 13(12), 0206704 (2018)CrossRef McCaskey, A., Dumitrescu, E., Chen, M., Lyakh, D., Humble, T.: Validating quantum-classical programming models with tensor network simulations. PLoS ONE 13(12), 0206704 (2018)CrossRef
10.
go back to reference Fatima, A., Markov, I.L.: Faster schrödinger-style simulation of quantum circuits. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 194–207 (2021). IEEE Fatima, A., Markov, I.L.: Faster schrödinger-style simulation of quantum circuits. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 194–207 (2021). IEEE
11.
go back to reference Wu, X.-C., Di, S., Dasgupta, E.M., Cappello, F., Finkel, H., Alexeev, Y., Chong, F.T.: Full-state quantum circuit simulation by using data compression. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–24 (2019) Wu, X.-C., Di, S., Dasgupta, E.M., Cappello, F., Finkel, H., Alexeev, Y., Chong, F.T.: Full-state quantum circuit simulation by using data compression. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–24 (2019)
12.
go back to reference Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:1601.07195 (2016) Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:​1601.​07195 (2016)
13.
go back to reference Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments. In: 32nd Computational Complexity Conference. LIPIcs, vol. 79, pp. 22–167 (2017) Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments. In: 32nd Computational Complexity Conference. LIPIcs, vol. 79, pp. 22–167 (2017)
14.
go back to reference Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving gate-level simulation of quantum circuits. Quantum Inf. Process. 2(5), 347–380 (2003)MathSciNetCrossRefMATH Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving gate-level simulation of quantum circuits. Quantum Inf. Process. 2(5), 347–380 (2003)MathSciNetCrossRefMATH
15.
go back to reference Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2018)CrossRef Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2018)CrossRef
17.
go back to reference Zhou, Y., Stoudenmire, E.M., Waintal, X.: What limits the simulation of quantum computers? Phys. Rev. X 10(4), 041038 (2020) Zhou, Y., Stoudenmire, E.M., Waintal, X.: What limits the simulation of quantum computers? Phys. Rev. X 10(4), 041038 (2020)
18.
go back to reference De Raedt, K., Michielsen, K., De Raedt, H., Trieu, B., Arnold, G., Richter, M., Lippert, T., Watanabe, H., Ito, N.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007)CrossRefMATHADS De Raedt, K., Michielsen, K., De Raedt, H., Trieu, B., Arnold, G., Richter, M., Lippert, T., Watanabe, H., Ito, N.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007)CrossRefMATHADS
19.
go back to reference Shang, H., Shen, L., Fan, Y., Xu, Z., Guo, C., Liu, J., Zhou, W., Ma, H., Lin, R., Yang, Y., et al.: Large-scale simulation of quantum computational chemistry on a new Sunway supercomputer. arXiv preprint arXiv:2207.03711 (2022) Shang, H., Shen, L., Fan, Y., Xu, Z., Guo, C., Liu, J., Zhou, W., Ma, H., Lin, R., Yang, Y., et al.: Large-scale simulation of quantum computational chemistry on a new Sunway supercomputer. arXiv preprint arXiv:​2207.​03711 (2022)
20.
go back to reference Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. arXiv preprint arXiv:1710.0586715 (2017) Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. arXiv preprint arXiv:​1710.​0586715 (2017)
21.
go back to reference Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017) Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017)
22.
go back to reference Li, R., Wu, B., Ying, M., Sun, X., Yang, G.: Quantum supremacy circuit simulation on Sunway TaihuLight. IEEE Trans. Parallel Distrib. Syst. 31(4), 805–816 (2019)CrossRef Li, R., Wu, B., Ying, M., Sun, X., Yang, G.: Quantum supremacy circuit simulation on Sunway TaihuLight. IEEE Trans. Parallel Distrib. Syst. 31(4), 805–816 (2019)CrossRef
23.
go back to reference Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: Qx: a high-performance quantum computer simulation platform. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 464–469 (2017). IEEE Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: Qx: a high-performance quantum computer simulation platform. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 464–469 (2017). IEEE
24.
go back to reference Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)CrossRef Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)CrossRef
Metadata
Title
Efficient algorithm for full-state quantum circuit simulation with DD compression while maintaining accuracy
Authors
Yuhong Song
Edwin Hsing-Mean Sha
Qingfeng Zhuge
Rui Xu
Han Wang
Publication date
01-11-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 11/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04160-5

Other articles of this Issue 11/2023

Quantum Information Processing 11/2023 Go to the issue