Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2024

01-02-2022 | Original Article

Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel

Authors: Dan Egesa, Pawel Plucinski

Published in: Biomass Conversion and Biorefinery | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the efficiency of extracting lipids from magnetically separated microalgae using ionic liquids (ILs) with subsequent recycling of ILs and magnetic nanoparticles (MNPs) was fully demonstrated for the first time. MNPs were used to separate microalgae from the aqueous phase at a separation efficiency of 99%. The separated microalgae/MNPs slurry was subjected to IL treatment to lyse the microalgae cell wall thereby exposing lipids for efficient solvent extraction using hexane. The lysed cells were mixed with hexane for 2 h to extract the lipids. The extraction efficiency of 99% was achieved when ILs/hexane was used compared to only 5% with hexane only. The extracted lipids were analyzed using gas chromatography-mass spectrometry (GC–MS), Fourier-transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (1H NMR). These then were transesterified to biodiesel. The MNPs were recovered from cell biomass by sonicating in de-ionized (DI) water and recycled via magnetic separation to harvest more microalgae at a separation efficiency of 96%. Thermogravimetric analysis (TGA) of recycled MNPs confirmed the absence of algal biomass attached to the particles. The ILs were also recycled and analyzed using 1H NMR, mass spectrometry, and FT-IR analysis. All these confirmed the absence of structural alteration in the recycled ILs. Magnetic separation can potentially lower the cost of microalgae harvesting and IL extraction can lower the cost of lipid extraction by 30–50%. A combination of the two processes implies that the extraction of lipids from magnetically separated microalgae could potentially lower the processing cost of biofuels and essential compounds. Recycling MNPs and ILs and extraction of essential compounds alongside microalgae lipids could further lower the processing costs potentially culminating in a lower cost of biofuels compared to petroleum-derived fuels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Orr VC, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600CrossRef Orr VC, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600CrossRef
2.
go back to reference Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F et al (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782CrossRef Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F et al (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782CrossRef
3.
go back to reference Egesa D, Chuck CJ, Plucinski P (2017) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef Egesa D, Chuck CJ, Plucinski P (2017) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef
4.
go back to reference Safarik I, Prochazkova G, Pospiskova K, Branyik T (2016) Magnetically modified microalgae and their applications. Crit Rev Biotechnol 36:931–941CrossRef Safarik I, Prochazkova G, Pospiskova K, Branyik T (2016) Magnetically modified microalgae and their applications. Crit Rev Biotechnol 36:931–941CrossRef
5.
go back to reference Teixeira RE (2012) Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem 14:419–427CrossRef Teixeira RE (2012) Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem 14:419–427CrossRef
6.
go back to reference Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610CrossRef Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610CrossRef
7.
go back to reference Boli E, Savvidou M, Logothetis D, Louli V, Pappa G, Voutsas E et al (2021) Magnetic harvesting of marine algae Nannochloropsis oceanica. Sep Sci Technol 56:730–737CrossRef Boli E, Savvidou M, Logothetis D, Louli V, Pappa G, Voutsas E et al (2021) Magnetic harvesting of marine algae Nannochloropsis oceanica. Sep Sci Technol 56:730–737CrossRef
8.
go back to reference Li X, Liu B, Lao Y, Wan P, Mao X, Chen F (2021) Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem Eng J 408:127252CrossRef Li X, Liu B, Lao Y, Wan P, Mao X, Chen F (2021) Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem Eng J 408:127252CrossRef
9.
go back to reference Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500CrossRef Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500CrossRef
10.
go back to reference Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621CrossRef Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621CrossRef
11.
go back to reference Bharte S, Desai K (2019) Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol Res 67:128–133CrossRef Bharte S, Desai K (2019) Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol Res 67:128–133CrossRef
12.
go back to reference Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf, B 112:213–218CrossRef Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf, B 112:213–218CrossRef
13.
go back to reference Kothari R, Tyagi VV, Pathak VV (2020) Algal biofuel. The Energy and Resources Institute (TERI), Mithapur Kothari R, Tyagi VV, Pathak VV (2020) Algal biofuel. The Energy and Resources Institute (TERI), Mithapur
14.
go back to reference Allnutt FT, Kessler BA (2015) Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae. Springer, Berlin, pp 289–310CrossRef Allnutt FT, Kessler BA (2015) Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae. Springer, Berlin, pp 289–310CrossRef
15.
go back to reference Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477CrossRef Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477CrossRef
16.
go back to reference Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701CrossRef Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701CrossRef
17.
go back to reference Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121CrossRef Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121CrossRef
18.
go back to reference Grøgaard HC (2011) Extraction and analysis of marine lipids with emphasis on phospholipids-evaluation and improvement of methods. Institutt for bioteknologi Grøgaard HC (2011) Extraction and analysis of marine lipids with emphasis on phospholipids-evaluation and improvement of methods. Institutt for bioteknologi
19.
go back to reference Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRef Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRef
20.
go back to reference Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Springer, Berlin, pp 187–205CrossRef Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Springer, Berlin, pp 187–205CrossRef
21.
go back to reference Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18CrossRef Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18CrossRef
22.
go back to reference Theegala CS (2015) Algal cell disruption and lipid extraction: a review on current technologies and limitations. Algal biorefineries. pp 419–441CrossRef Theegala CS (2015) Algal cell disruption and lipid extraction: a review on current technologies and limitations. Algal biorefineries. pp 419–441CrossRef
23.
go back to reference Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef
24.
go back to reference Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef
25.
go back to reference Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
26.
go back to reference Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929CrossRef Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929CrossRef
27.
go back to reference Earle MJ, Esperança JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831CrossRef Earle MJ, Esperança JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831CrossRef
28.
go back to reference Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961CrossRef Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961CrossRef
29.
go back to reference Tian M, Fang L, Yan X, Xiao W, Row KH (2019) Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J Anal Meth Chem 2019:1CrossRef Tian M, Fang L, Yan X, Xiao W, Row KH (2019) Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J Anal Meth Chem 2019:1CrossRef
30.
go back to reference Merone GM, Tartaglia A, Rosato E, D’Ovidio C, Kabir A, Ulusoy HI et al (2021) Ionic liquids in analytical chemistry: applications and recent trends. Curr Anal Chem 17:1340–1355CrossRef Merone GM, Tartaglia A, Rosato E, D’Ovidio C, Kabir A, Ulusoy HI et al (2021) Ionic liquids in analytical chemistry: applications and recent trends. Curr Anal Chem 17:1340–1355CrossRef
31.
go back to reference Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef
32.
go back to reference Kadokawa R, Endo T, Yasaka Y, Ninomiya K, Takahashi K, Kuroda K (2021) Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations. ACS Sustain Chem Eng 9:8686–8691CrossRef Kadokawa R, Endo T, Yasaka Y, Ninomiya K, Takahashi K, Kuroda K (2021) Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations. ACS Sustain Chem Eng 9:8686–8691CrossRef
33.
go back to reference Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef
34.
go back to reference Egesa D, Mulindwa P, Mubiru E, Kyomuhimbo HD, Aturagaba G (2021) Hydrothermal liquefaction of water hyacinth: effect of process conditions and magnetite nanoparticles on biocrude yield and composition. J Sustain Bioenergy Syst 11:157–186CrossRef Egesa D, Mulindwa P, Mubiru E, Kyomuhimbo HD, Aturagaba G (2021) Hydrothermal liquefaction of water hyacinth: effect of process conditions and magnetite nanoparticles on biocrude yield and composition. J Sustain Bioenergy Syst 11:157–186CrossRef
35.
go back to reference Egesa D, Chuck CJ, Plucinski P (2018) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef Egesa D, Chuck CJ, Plucinski P (2018) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef
36.
go back to reference Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236CrossRef Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236CrossRef
37.
go back to reference Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRef Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRef
38.
go back to reference Christie WW (1973) Lipid analysis, vol 167. Pergamon press, Oxford Christie WW (1973) Lipid analysis, vol 167. Pergamon press, Oxford
39.
go back to reference Duvekot C (2019) Determination of total FAME and linoleic acid methyl esters in biodiesel according to EN-14103 Duvekot C (2019) Determination of total FAME and linoleic acid methyl esters in biodiesel according to EN-14103
40.
go back to reference Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington DCCrossRef Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington DCCrossRef
41.
go back to reference Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Biores Technol 123:717–722CrossRef Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Biores Technol 123:717–722CrossRef
42.
go back to reference Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV et al (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824CrossRef Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV et al (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824CrossRef
43.
go back to reference Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52:199–202CrossRef Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52:199–202CrossRef
44.
go back to reference Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174CrossRef Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174CrossRef
45.
go back to reference Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121CrossRef Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121CrossRef
46.
go back to reference Yoo B, Jing B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889CrossRef Yoo B, Jing B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889CrossRef
47.
go back to reference Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362CrossRef Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362CrossRef
48.
go back to reference Fink JK (2013) Unsaturated polyester resins. Reactive Polymers Fundamentals and Applications. Elsevier, Amsterdam, pp 1–48 Fink JK (2013) Unsaturated polyester resins. Reactive Polymers Fundamentals and Applications. Elsevier, Amsterdam, pp 1–48
49.
go back to reference Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 19:2178–2179CrossRef Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 19:2178–2179CrossRef
50.
go back to reference Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189CrossRef Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189CrossRef
51.
go back to reference Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) “Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) “Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef
52.
go back to reference Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef
53.
go back to reference Ab Rani M, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH et al (2011) Understanding the polarity of ionic liquids”. Phys Chem Chem Phys 13:16831–16840CrossRef Ab Rani M, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH et al (2011) Understanding the polarity of ionic liquids”. Phys Chem Chem Phys 13:16831–16840CrossRef
54.
go back to reference Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef
55.
go back to reference Balasubramanian RK, Doan TTY, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215:929–936CrossRef Balasubramanian RK, Doan TTY, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215:929–936CrossRef
56.
go back to reference Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenerg 56:99–103CrossRef Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenerg 56:99–103CrossRef
57.
go back to reference Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732CrossRef Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732CrossRef
58.
go back to reference Sarpal A, Costa I, Teixeira C, Filocomo D, Candido R (2016) Investigation of biodiesel potential of biomasses of microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS techniques. J Biotechnol Biomater 6:2 Sarpal A, Costa I, Teixeira C, Filocomo D, Candido R (2016) Investigation of biodiesel potential of biomasses of microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS techniques. J Biotechnol Biomater 6:2
59.
go back to reference Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129CrossRef Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129CrossRef
Metadata
Title
Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel
Authors
Dan Egesa
Pawel Plucinski
Publication date
01-02-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02377-5

Other articles of this Issue 1/2024

Biomass Conversion and Biorefinery 1/2024 Go to the issue